
Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 1

A Typical Relational
Query Optimizer

Chapter 14

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 2

Highlights of System R Optimizer

❖ Impact:
– Most widely used currently; works well for < 10 joins.

❖ Cost estimation: Approximate art at best.
– Statistics, maintained in system catalogs, used to estimate

cost of operations and result sizes.
– Considers combination of CPU and I/O costs.

❖ Plan Space: Too large, must be pruned.
– Only the space of left-deep plans is considered.

◆ Left-deep plans allow output of each operator to be pipelined into
the next operator without storing it in a temporary relation.

– Cartesian products avoided.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 3

Schema for Examples

❖ Similar to old schema; rname added for variations.
❖ Reserves:

– Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.

❖ Sailors:
– Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 4

Translating SQL to Relational Algebra

SELECT S.sid, MIN (R.day)
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = “red”
AND S.rating = (SELECT MAX (S2.rating) FROM Sailors S2)
GROUP BY S.sid
HAVING COUNT (*) >= 2

����������	�
�� �� � ������ �
��
���
� ��
���� ��� ��� ����� ����������� �
� �� � ��� � � ������������� ����� ��� ����� ��� ��� ����� ������� ��� � ����!������ � �
� �����
���� �� � ���� ���������
��"����� � ��� ������� �"�����#
� 	�
��
��
� �� � ����
�������� ��� ��� ����� ����� �����"� ����!������ $

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 5

Translating SQL to Relational Algebra

SELECT S.sid, MIN (R.day)
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = “red”
AND S.rating = (SELECT MAX (S2.rating) FROM Sailors S2)
GROUP BY S.sid
HAVING COUNT (*) >= 2

% ������� &'� ��	�(

π S.sid) *�+ ,�- .�/ 0 1 2 3 � 4#5#6�% 7�8:9�;=<?>?@�A B C D E
(8#F'G�H�IJ&�K

S.Sid (

S.Sid=R.sid L=M N O P Q R?M N O PSR=M T U V U WXQ�Y W Z P []\ M W ^ _ O ` a�Q val(b �� � ��� ��c�F'��� ��� ������d]&'����� � � � � �σ ∧∧∧

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 6

Relational Algebra Equivalences

❖ Allow us to choose different join orders and to `push’
selections and projections ahead of joins.

❖ Selections: (Cascade)() ()()σ σ σc cn c cnR R1 1∧ ∧ ≡... . . .

()() ()()σ σ σ σc c c cR R1 2 2 1≡ (Commute)

❖ Projections: () ()()()π π πa a anR R1 1≡ . . . (Cascade)

❖ Joins: ✞✜R (S T) (R S) T✞✜ ✞✜ ✞✜≡ (Associative)

✞✜(R S) (S R) ✞✜ ≡ (Commute)

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 7

More Equivalences

❖ A projection commutes with a selection that only
uses attributes retained by the projection.

❖ Selection between attributes of the two arguments of
a cross-product converts cross-product to a join.

❖ A selection on just attributes of R commutes with
R S. (i.e., (R S) (R) S)

❖ Similarly, if a projection follows a join R S, we can
`push’ it by retaining only attributes of R (and S) that
are needed for the join or are kept by the projection.

✞✜ σ ✞✜ ✞✜σ≡
✞✜

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 8

Enumeration of Alternative Plans

❖ There are two main cases:
– Single-relation plans
– Multiple-relation plans

❖ For queries over a single relation, queries consist of a
combination of selects, projects, and aggregate ops:
– Each available access path (file scan / index) is considered,

and the one with the least estimated cost is chosen.
– The different operations are essentially carried out

together (e.g., if an index is used for a selection, projection
is done for each retrieved tuple, and the resulting tuples
are pipelined into the aggregate computation).

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 9

Size Estimation and Reduction Factors

❖ Consider a query block:
❖ Maximum # tuples in result is the product of the

cardinalities of relations in the FROM clause.
❖ Reduction factor (RF) associated with each term reflects

the impact of the term in reducing result size. Result
cardinality = Max # tuples * product of all RF’s.
– Implicit assumption that terms are independent!
– Term col=value has RF 1/NKeys(I), given index I on col
– Term col1=col2 has RF 1/MAX(NKeys(I1), NKeys(I2))
– Term col>value has RF (High(I)-value)/(High(I)-Low(I))

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 10

Reduction Factors & Histograms

❖ For better estimation, use a histogram

equiwidth
������� ���	��
 ����

2 3 3 1 8 2 1
Value 0-.99 1-1.99 2-2.99 3-3.99 4-4.99 5-5.99 6-6.99

������� ������� ��� �
2 3 3 3 3 2 4

Value 0-.99 1-1.99 2-2.99 3-4.05 4.06-4.67 4.68-4.99 5-6.99

equidepth

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 11

Cost Estimates for Single-Relation Plans

❖ Index I on primary key matches selection:
– Cost is Height(I)+1 for a B+ tree, about 1.2 for hash index.

❖ Clustered index I matching one or more selects:
– (NPages(I)+NPages(R)) * product of RF’s of matching selects.

❖ Non-clustered index I matching one or more selects:
– (NPages(I)+NTuples(R)) * product of RF’s of matching selects.

❖ Sequential scan of file:
– NPages(R).

☞ Note: Typically, no duplicate elimination on projections!
(Exception: Done on answers if user says DISTINCT.)

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 12

Example

❖ If we have an index on rating:
– (1/NKeys(I)) * NTuples(R) = (1/10) * 40000 tuples retrieved.
– Clustered index: (1/NKeys(I)) * (NPages(I)+NPages(R)) =

(1/10) * (50+500) pages are retrieved. (This is the cost.)
– Unclustered index: (1/NKeys(I)) * (NPages(I)+NTuples(R))

= (1/10) * (50+40000) pages are retrieved.

❖ If we have an index on sid:
– Would have to retrieve all tuples/pages. With a clustered

index, the cost is 50+500, with unclustered index, 50+40000.

❖ Doing a file scan:
– We retrieve all file pages (500).

SELECT S.sid
FROM Sailors S
WHERE S.rating=8

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 13

Queries Over Multiple Relations
❖ Fundamental decision in System R: only left-deep join

trees are considered.
– As the number of joins increases, the number of alternative

plans grows rapidly; we need to restrict the search space.
– Left-deep trees allow us to generate all fully pipelined plans.

◆ Intermediate results not written to temporary files.
◆ Not all left-deep trees are fully pipelined (e.g., SM join).

BA

C

D

BA

C

D

C DBA
Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 14

Enumeration of Left-Deep Plans
❖ Left-deep plans differ only in the order of relations,

the access method for each relation, and the join
method for each join.

❖ Enumerated using N passes (if N relations joined):
– Pass 1: Find best 1-relation plan for each relation.
– Pass 2: Find best way to join result of each 1-relation plan

(as outer) to another relation. (All 2-relation plans.)
– Pass N: Find best way to join result of a (N-1)-relation plan

(as outer) to the N’th relation. (All N-relation plans.)

❖ For each subset of relations, retain only:
– Cheapest plan overall, plus
– Cheapest plan for each interesting order of the tuples.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 15

Enumeration of Plans (Contd.)

❖ ORDER BY, GROUP BY, aggregates etc. handled as a
final step, using either an `interestingly ordered’
plan or an addional sorting operator.

❖ An N-1 way plan is not combined with an
additional relation unless there is a join condition
between them, unless all predicates in WHERE have
been used up.
– i.e., avoid Cartesian products if possible.

❖ In spite of pruning plan space, this approach is still
exponential in the # of tables.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 16

Example
❖ Pass1:

– Sailors: B+ tree matches rating>5,
and is probably cheapest. However,
if this selection is expected to
retrieve a lot of tuples, and index is
unclustered, file scan may be cheaper.

◆ Still, B+ tree plan kept (because tuples are in rating order).

– Reserves: B+ tree on bid matches bid=500; cheapest.

Sailors:
B+ tree on rating
Hash on sid

Reserves:
B+ tree on bid

❖ Pass 2:
– We consider each plan retained from Pass 1 as the outer,
and consider how to join it with the (only) other relation.

◆ e.g., Reserves as outer: Hash index can be used to get Sailors tuples
that satisfy sid = outer tuple’s sid value.

Reserves Sailors

sid=sid

��� ����� � �	�
 � � ������

sname

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 17

Example
Sailors:
Hash, B+ on sid

Reserves:
Clustered B+ tree on bid
B+ on sid

Boats
B+, Hash on color

Reserves

Sailors

sid=sid

���
 � �

��� � � ������� � ! " #��
numbes

Select S.sid, COUNT(*) AS numbes
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = “red”
GROUP BY S.sid

GROUPBY sid

bid=bid

Color=red

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 18

Pass 1

❖ Best plan for accessing each relation
regarded as the first relation in an
execution plan
– Reserves, Sailors: File Scan
– Boats: B+ tree & Hash on color

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 19

Pass 2

❖ For each of the plans in pass 1, generate plans
joining another relation as the inner, using all
join methods

– File Scan Reserves (outer) with Boats (inner)
– File Scan Reserves (outer) with Sailors (inner)
– File Scan Sailors (outer) with Boats (inner)
– File Scan Sailors (outer) with Reserves (inner)
– Boats hash on color with Sailors (inner)
– Boats Btree on color with Sailors (inner)
– Boats hash on color with Reserves (inner) (sort-merge)
– Boats Btree on color with Reserves (inner) (BNL)

❖ Retain cheapest plan

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 20

Pass 3

❖ For each of the plans retained from Pass 2, taken
as the outer, generate plans for the inner join

– eg Boats hash on color with Reserves (bid) (inner) (sortmerge))
inner Sailors (B-tree sid) sort-merge

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 21

Add cost of aggregate

❖ Cost to sort the result by sid, if not returned
sorted

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 22

Now Find Minimum

❖ A form of dynamic programming is often used

Plan Cost
A 1050
B 2100
C 29

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 23

Nested Queries

❖ Nested block is optimized
independently, with the outer
tuple considered as providing a
selection condition.

❖ Outer block is optimized with
the cost of `calling’ nested block
computation taken into account.

❖ Implicit ordering of these blocks
means that some good strategies
are not considered. The non-
nested version of the query is
typically optimized better.

SELECT S.sname
FROM Sailors S
WHERE EXISTS

(SELECT *
FROM Reserves R
WHERE R.bid=103
AND R.sid=S.sid)

Nested block to optimize:
SELECT *
FROM Reserves R
WHERE R.bid=103

AND S.sid= outer value

Equivalent non-nested query:
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

AND R.bid=103
Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 24

Points to Remember

❖ Must understand optimization in order to understand
the performance impact of a given database design
(relations, indexes) on a workload (set of queries).

❖ Two parts to optimizing a query:
– Consider a set of alternative plans.

◆ Must prune search space; typically, left-deep plans only.

– Must estimate cost of each plan that is considered.
◆ Must estimate size of result and cost for each plan node.
◆ Key issues: Statistics, indexes, operator implementations.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 25

Points to Remember
❖ Single-relation queries:

– All access paths considered, cheapest is chosen.
– Issues: Selections that match index, whether index key has

all needed fields and/or provides tuples in a desired order.

❖ Multiple-relation queries:
– All single-relation plans are first enumerated.

◆ Selections/projections considered as early as possible.

– Next, for each 1-relation plan, all ways of joining another
relation (as inner) are considered.

– Next, for each 2-relation plan that is `retained’, all ways of
joining another relation (as inner) are considered, etc.

– At each level, for each subset of relations, only best plan for
each interesting order of tuples is `retained’.

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke 26

Summary

❖ Optimization is the reason for the lasting
power of the relational system

❖ But it is primitive
❖ New areas: Rule-based optimizers, random

statistical approaches (eg simulated annealing)

