

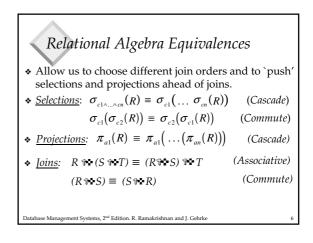
 Translating SQL to Relational Algebra

 SELECT S.sid, MIN (R.day)

 FROM Sailors S, Reserves R, Boats B

 WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = "red"

 AND S.rating = (SELECT MAX (S2.rating) FROM Sailors S2)

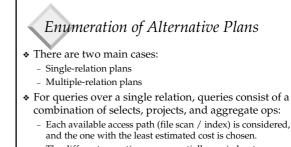

 GROUP BY S.sid

 HAVING COUNT (*) > 2

 Inner Block

 π

 S.sid, MIN(R.day)(HAVING COUNT(*) > 2 (GROUP BY S.Sid (GROUP BY S.Sid (S.Sid=Rid*R bid=Bid %color = "red", S.rating = val (Sailors x Reserves X Boats)))))



More Equivalences

- A projection commutes with a selection that only uses attributes retained by the projection.
- Selection between attributes of the two arguments of a cross-product converts cross-product to a join.
- ◆ A selection on just attributes of R commutes with R ™ S. (i.e., σ (R ™ S) ≡ σ (R) № S)

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke

 Similarly, if a projection follows a join R * S, we can `push' it by retaining only attributes of R (and S) that are needed for the join or are kept by the projection.

 The different operations are essentially carried out together (e.g., if an index is used for a selection, projection is done for each retrieved tuple, and the resulting tuples are *pipelined* into the aggregate computation).

tabase Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke

Size Estimation and Reduction Factors SELECT attribute list FROM relation list WHERE term1 AND ... AND termk

- Maximum # tuples in result is the product of the cardinalities of relations in the FROM clause.
- *Reduction factor (RF)* associated with each *term* reflects the impact of the *term* in reducing result size. *Result cardinality* = Max # tuples * product of all RF's.
 - Implicit assumption that *terms* are independent!
 - Term col=value has RF 1/NKeys(I), given index I on col
 - Term col1=col2 has RF 1/MAX(NKeys(I1), NKeys(I2))
 - Term col>value has RF (High(I)-value)/(High(I)-Low(I))
- Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke

 Reduction Factors & Histograms

 • For better estimation, use a histogram

 No. of Values
 2
 3
 1
 8
 2
 1

 Value
 0.99
 1-1.99
 2.09
 3.3.99
 4.4.99
 5.5.99
 6.6.99
 equiwidth

 No. of Values
 2
 3
 3
 3
 2
 4

 Value
 0.99
 1-1.99
 2.99
 3.4.05
 4.06
 4.67
 4.68
 4.99
 5.6.99

 equidepth

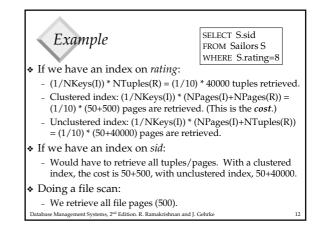
s, 2nd Edition. R. Ramakrishnan and J. Gehrke

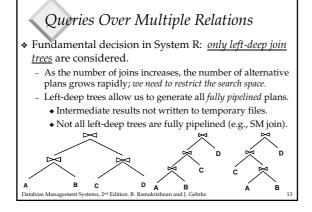
 Cost Estimates for Single-Relation Plans
 Index I on primary key matches selection:

 Cost is Height(1)+1 for a B+ tree, about 1.2 for hash index.

 Clustered index I matching one or more selects:

 (NPages(I)+NPages(R)) * product of RF's of matching selects.

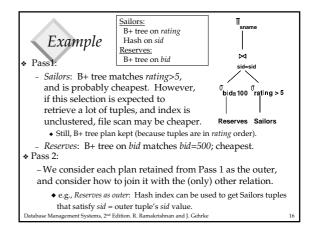

 Non-clustered index I matching one or more selects:

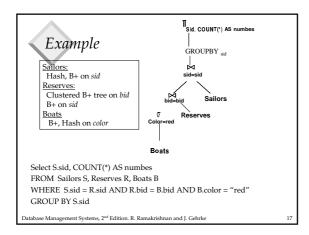

 (NPages(I)+NTuples(R)) * product of RF's of matching selects.

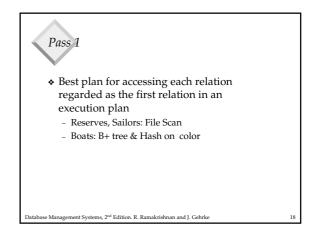
 Sequential scan of file:

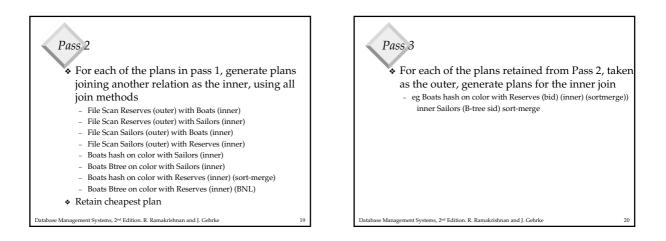
 NPages(R).

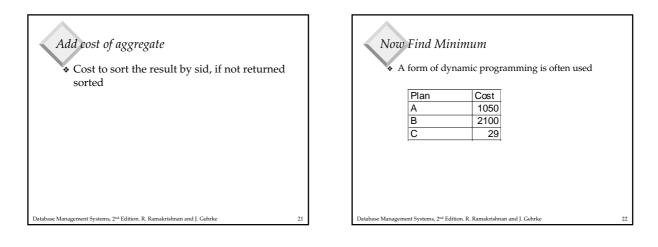
 <u>Note:</u> Typically, no duplicate elimination on projections! (Exception: Done on answers if user says DISTINCT.)
 Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrker

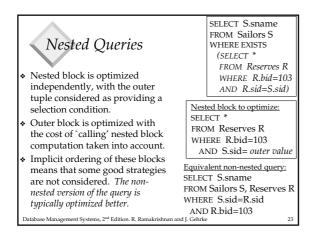


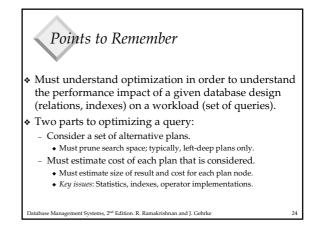



Enumeration of Plans (Contd.)


- ORDER BY, GROUP BY, aggregates etc. handled as a final step, using either an `interestingly ordered' plan or an addional sorting operator.
- An N-1 way plan is not combined with an additional relation unless there is a join condition between them, unless all predicates in WHERE have been used up.
 - i.e., avoid Cartesian products if possible.
- In spite of pruning plan space, this approach is still exponential in the # of tables.


Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke





Points to Remember

- Single-relation queries:
 - All access paths considered, cheapest is chosen.
 - *Issues*: Selections that *match* index, whether index key has all needed fields and/or provides tuples in a desired order.
- Multiple-relation queries:
 - All single-relation plans are first enumerated.
 - Selections/projections considered as early as possible.
 - Next, for each 1-relation plan, all ways of joining another relation (as inner) are considered.
 - Next, for each 2-relation plan that is `retained', all ways of joining another relation (as inner) are considered, etc.
- At each level, for each subset of relations, only best plan for each interesting order of tuples is `retained'.
 Database Management Systems, ²⁴¹ Edition. R. Ramakrishnan and J. Gebrke 25

Summary
Optimization is the reason for the lasting power of the relational system
But it is primitive
New areas: Rule-based optimizers, random statistical approaches (*eg simulated annealing*)

Database Management Systems, 2nd Edition. R. Ramakrishnan and J. Gehrke