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File Organizations and Indexing

Chapter 8

“How index-learning turns no student pale
Yet holds the eel of science by the tail.”

-- Alexander Pope (1688-1744)
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Alternative File Organizations

Many alternatives exist, each ideal for some 
situation , and not so good in others:

– Heap files: Suitable when typical access is a file 
scan retrieving all records.

– Sorted Files: Best if records must be retrieved in 
some order, or only a `range’ of records is needed.

– Hashed Files: Good for equality selections.
◆ File is a collection of buckets. Bucket = primary

page plus zero or more overflow pages.
◆ Hashing function h:  h(r) = bucket in which 

record r belongs. h looks at only some of the 
fields of r, called the search fields.
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Cost Model for Our Analysis

We ignore CPU costs, for simplicity:
– B:  The number of data pages
– R:  Number of records per page
– D:  (Average) time to read or write disk page
– Measuring number of page I/O’s ignores gains of 

pre-fetching blocks of pages; thus, even I/O cost is 
only approximated.   

– Average-case analysis; based on several simplistic 
assumptions.

☛ Good enough to show the overall trends!
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Assumptions in Our Analysis

❖ Single record insert and delete.
❖ Heap Files:

– Equality selection on key; exactly one match.
– Insert always at end of file.

❖ Sorted Files:
– Files compacted after deletions.
– Selections on sort field(s).

❖ Hashed Files:
– No overflow buckets, 80% page occupancy. 
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Cost of Operations 

Heap
File

Sorted
 File

Hashed
File

Scan all recs

Equality Search

Range Search

Insert

Delete

☛ Several assumptions underlie these (rough) estimates!
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Cost of Operations 

Heap
File

Sorted
 File

Hashed
File

Scan all recs BD BD 1.25 BD

Equality Search 0.5 BD D log2B D

Range Search BD D (log2B + # of
pages with
matches)

1.25 BD

Insert 2D Search + BD 2D

Delete Search + D Search + BD 2D

☛ Several assumptions underlie these (rough) estimates!



Database Management Systems, R. Ramakrishnan and J. Gehrke 7

Indexes

❖ An index on a file speeds up selections on the 
search key fields for the index.
– Any subset of the fields of a relation can be the 

search key for an index on the relation.
– Search key is not the same as key (minimal set of 

fields that uniquely identify a record in a relation).

❖ An index contains a collection of data entries, 
and supports efficient retrieval of all data 
entries k* with a given key value k.
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Alternatives for Data Entry k* in Index

❖ Three alternatives:
➀ Data record with key value k
➁ <k, rid of data record with search key value k>
➂ <k, list of rids of data records with search key k>

❖ Choice of alternative for data entries is 
orthogonal to the indexing technique used to 
locate data entries with a given key value k.
– Examples of indexing techniques: B+ trees, hash-

based structures
– Typically, index contains auxiliary information that 

directs searches to the desired data entries
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Alternatives for Data Entries (Contd.)

❖ Alternative 1:
– If this is used, index structure is a file organization 

for data records (like Heap files or sorted files).
– At most one index on a given collection of data 

records can use Alternative 1.  (Otherwise, data 
records duplicated, leading to redundant storage 
and potential inconsistency.)

– If data records very large,  # of pages containing 
data entries is high.  Implies size of auxiliary 
information in the index is also large, typically. 
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Alternatives for Data Entries (Contd.)

❖ Alternatives 2 and 3:
– Data entries typically much smaller than data 

records.  So, better than Alternative 1 with large 
data records, especially if search keys are small. 
(Portion of index structure used to direct search is 
much smaller than with Alternative 1.)

– If more than one index is required on a given file, at 
most one index can use Alternative 1; rest must use 
Alternatives 2 or 3.

– Alternative 3 more compact than Alternative 2, but 
leads to variable sized data entries even if search 
keys are of fixed length.
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Index Classification

❖ Primary vs. secondary:  If search key contains 
primary key, then called primary index.

– Unique index:  Search key contains a candidate key.

❖ Clustered vs. unclustered:  If order of data records 
is the same as, or `close to’, order of data entries, 
then called clustered index.
– Alternative 1 implies clustered, but not vice-versa.
– A file can be clustered on at most one search key.
– Cost of retrieving data records through index varies 

greatly based on whether index is clustered or not!
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Clustered vs. Unclustered Index
❖ Suppose that Alternative (2) is used for data entries, 

and that the data records are stored in a Heap file.
– To build clustered index, first sort the Heap file (with 

some free space on each page for future inserts).  
– Overflow pages may be needed for inserts.  (Thus, order of 

data recs is `close to’, but not identical to, the sort order.)
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Index Classification (Contd.)

❖ Dense vs. Sparse:  If 
there is at least one data 
entry per  search key 
value (in some data 
record), then dense.

– Alternative 1 always 
leads to dense index.

– Every sparse index is 
clustered!

– Sparse indexes are 
smaller; however, some 
useful optimizations are 
based on dense indexes.
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Index Classification (Contd.)
❖ Composite Search Keys: Search 

on a combination of fields.
– Equality query: Every field 

value is equal to a constant 
value. E.g. wrt <sal,age> index:

◆ age=20 and sal =75

– Range query: Some field value 
is not a constant. E.g.:

◆ age =20; or age=20 and sal > 10

❖ Data entries in index sorted 
by search key to support 
range queries.

– Lexicographic order, or
– Spatial order.
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Data records
sorted by name

Data entries in index
sorted by <sal,age>

Data entries
sorted by <sal>

Examples of composite key
indexes using lexicographic order.
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Summary

❖ Many alternative file organizations exist, each 
appropriate in some situation.

❖ If selection queries are frequent, sorting the 
file or building an index is important.

– Hash-based indexes only good for equality search.
– Sorted files and tree-based indexes best for range 

search; also good for equality search.  (Files rarely 
kept sorted in practice; B+ tree index is better.)

❖ Index is a collection of data entries plus a way 
to quickly find entries with given key values.
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Summary (Contd.)

❖ Data entries can be actual data records, <key, 
rid> pairs, or <key, rid-list> pairs.
– Choice orthogonal to indexing technique used to 

locate data entries with a given key value.

❖ Can have several indexes on a given file of 
data records, each with a different search key.

❖ Indexes can be classified as clustered vs. 
unclustered, primary vs. secondary, and 
dense vs. sparse.  Differences have important 
consequences for utility/performance.


