
Database Management Systems, R. Ramakrishnan and J. Gehrke 1

File Organizations and Indexing

Chapter 8

“How index-learning turns no student pale
Yet holds the eel of science by the tail.”

-- Alexander Pope (1688-1744)

Database Management Systems, R. Ramakrishnan and J. Gehrke 2

Alternative File Organizations

Many alternatives exist, each ideal for some
situation , and not so good in others:

– Heap files: Suitable when typical access is a file
scan retrieving all records.

– Sorted Files: Best if records must be retrieved in
some order, or only a `range’ of records is needed.

– Hashed Files: Good for equality selections.
◆ File is a collection of buckets. Bucket = primary

page plus zero or more overflow pages.
◆ Hashing function h: h(r) = bucket in which

record r belongs. h looks at only some of the
fields of r, called the search fields.

Database Management Systems, R. Ramakrishnan and J. Gehrke 3

Cost Model for Our Analysis

We ignore CPU costs, for simplicity:
– B: The number of data pages
– R: Number of records per page
– D: (Average) time to read or write disk page
– Measuring number of page I/O’s ignores gains of

pre-fetching blocks of pages; thus, even I/O cost is
only approximated.

– Average-case analysis; based on several simplistic
assumptions.

☛ Good enough to show the overall trends!

Database Management Systems, R. Ramakrishnan and J. Gehrke 4

Assumptions in Our Analysis

❖ Single record insert and delete.
❖ Heap Files:

– Equality selection on key; exactly one match.
– Insert always at end of file.

❖ Sorted Files:
– Files compacted after deletions.
– Selections on sort field(s).

❖ Hashed Files:
– No overflow buckets, 80% page occupancy.

Database Management Systems, R. Ramakrishnan and J. Gehrke 5

Cost of Operations

Heap
File

Sorted
 File

Hashed
File

Scan all recs

Equality Search

Range Search

Insert

Delete

☛ Several assumptions underlie these (rough) estimates!

Database Management Systems, R. Ramakrishnan and J. Gehrke 6

Cost of Operations

Heap
File

Sorted
 File

Hashed
File

Scan all recs BD BD 1.25 BD

Equality Search 0.5 BD D log2B D

Range Search BD D (log2B + # of
pages with
matches)

1.25 BD

Insert 2D Search + BD 2D

Delete Search + D Search + BD 2D

☛ Several assumptions underlie these (rough) estimates!

Database Management Systems, R. Ramakrishnan and J. Gehrke 7

Indexes

❖ An index on a file speeds up selections on the
search key fields for the index.
– Any subset of the fields of a relation can be the

search key for an index on the relation.
– Search key is not the same as key (minimal set of

fields that uniquely identify a record in a relation).

❖ An index contains a collection of data entries,
and supports efficient retrieval of all data
entries k* with a given key value k.

Database Management Systems, R. Ramakrishnan and J. Gehrke 8

Alternatives for Data Entry k* in Index

❖ Three alternatives:
➀ Data record with key value k
➁ <k, rid of data record with search key value k>
➂ <k, list of rids of data records with search key k>

❖ Choice of alternative for data entries is
orthogonal to the indexing technique used to
locate data entries with a given key value k.
– Examples of indexing techniques: B+ trees, hash-

based structures
– Typically, index contains auxiliary information that

directs searches to the desired data entries

Database Management Systems, R. Ramakrishnan and J. Gehrke 9

Alternatives for Data Entries (Contd.)

❖ Alternative 1:
– If this is used, index structure is a file organization

for data records (like Heap files or sorted files).
– At most one index on a given collection of data

records can use Alternative 1. (Otherwise, data
records duplicated, leading to redundant storage
and potential inconsistency.)

– If data records very large, # of pages containing
data entries is high. Implies size of auxiliary
information in the index is also large, typically.

Database Management Systems, R. Ramakrishnan and J. Gehrke 10

Alternatives for Data Entries (Contd.)

❖ Alternatives 2 and 3:
– Data entries typically much smaller than data

records. So, better than Alternative 1 with large
data records, especially if search keys are small.
(Portion of index structure used to direct search is
much smaller than with Alternative 1.)

– If more than one index is required on a given file, at
most one index can use Alternative 1; rest must use
Alternatives 2 or 3.

– Alternative 3 more compact than Alternative 2, but
leads to variable sized data entries even if search
keys are of fixed length.

Database Management Systems, R. Ramakrishnan and J. Gehrke 11

Index Classification

❖ Primary vs. secondary: If search key contains
primary key, then called primary index.

– Unique index: Search key contains a candidate key.

❖ Clustered vs. unclustered: If order of data records
is the same as, or `close to’, order of data entries,
then called clustered index.
– Alternative 1 implies clustered, but not vice-versa.
– A file can be clustered on at most one search key.
– Cost of retrieving data records through index varies

greatly based on whether index is clustered or not!

Database Management Systems, R. Ramakrishnan and J. Gehrke 12

Clustered vs. Unclustered Index
❖ Suppose that Alternative (2) is used for data entries,

and that the data records are stored in a Heap file.
– To build clustered index, first sort the Heap file (with

some free space on each page for future inserts).
– Overflow pages may be needed for inserts. (Thus, order of

data recs is `close to’, but not identical to, the sort order.)

� � � � ��� � � � � � 	

 � � � � � � � � � 	

� � � � � � 	 � � � �
�� � �

� � � � � ��� � � � �

�
 � � � � � � � �

 � � ��� � � � � � 	

� � � � � � � � � � 	

 � � � � � � � � � 	

 � � ��� � � � � � 	

CLUSTERED UNCLUSTERED

Database Management Systems, R. Ramakrishnan and J. Gehrke 13

Index Classification (Contd.)

❖ Dense vs. Sparse: If
there is at least one data
entry per search key
value (in some data
record), then dense.

– Alternative 1 always
leads to dense index.

– Every sparse index is
clustered!

– Sparse indexes are
smaller; however, some
useful optimizations are
based on dense indexes.

� � � � � � � � � � 	 	 	

 � �
 � � � � � � 	 	 	

Ashby

Cass

Smith

22

25

30

40

44

44

50

� � � � 	 � � � � � �

on
Name

��� � ��� � � �

 � � 	 ��� � � � �

on
Age

33

� � � �
 � � � � 	 � � 	 	 �
Basu
� � � � � 	 	 �

� � � � � 	 � � 	 	 �

! � " � � � � � � 	 	 �

# $ � % & � � � � � ' 	 	 �
(� $ % � � � 	 � ' 	 	 �

Database Management Systems, R. Ramakrishnan and J. Gehrke 14

Index Classification (Contd.)
❖ Composite Search Keys: Search

on a combination of fields.
– Equality query: Every field

value is equal to a constant
value. E.g. wrt <sal,age> index:

◆ age=20 and sal =75

– Range query: Some field value
is not a constant. E.g.:

◆ age =20; or age=20 and sal > 10

❖ Data entries in index sorted
by search key to support
range queries.

– Lexicographic order, or
– Spatial order.

sue 13 75

bob

cal

joe 12

10

20

8011

12

name age sal

<sal)
� * � +

<age, sal> <age>

<sal>

12,20

12,10

11,80

13,75

20,12

10,12

75,13

80,11

11

12

12

13

10

20

75

80

Data records
sorted by name

Data entries in index
sorted by <sal,age>

Data entries
sorted by <sal>

Examples of composite key
indexes using lexicographic order.

Database Management Systems, R. Ramakrishnan and J. Gehrke 15

Summary

❖ Many alternative file organizations exist, each
appropriate in some situation.

❖ If selection queries are frequent, sorting the
file or building an index is important.

– Hash-based indexes only good for equality search.
– Sorted files and tree-based indexes best for range

search; also good for equality search. (Files rarely
kept sorted in practice; B+ tree index is better.)

❖ Index is a collection of data entries plus a way
to quickly find entries with given key values.

Database Management Systems, R. Ramakrishnan and J. Gehrke 16

Summary (Contd.)

❖ Data entries can be actual data records, <key,
rid> pairs, or <key, rid-list> pairs.
– Choice orthogonal to indexing technique used to

locate data entries with a given key value.

❖ Can have several indexes on a given file of
data records, each with a different search key.

❖ Indexes can be classified as clustered vs.
unclustered, primary vs. secondary, and
dense vs. sparse. Differences have important
consequences for utility/performance.

