Bindel, Spring 2017 Numerical Analysis (CS 4220)

Proj 1: Harmonious Learning

There are many problems that involve optimizing some objective function by
making local adjustments to a structure or graph. For example:

e If we want to reinforce a truss with a limited budget, where should we
add new beams (or strengthen old ones)?

e After a failure in the power grid, how should lines be either taken out
of service or put in service to ensure no other lines are overloaded?

e In a road network, how will road closures or rate-limiting of on-ramps
affect congestion (for better or worse)?

e In a social network, which edges are most critical to spreading infor-
mation or influence to a target audience?

For our project, we will consider a simple method for graph interpolation.
We are given a (possibly weighted) undirected graph on n nodes, and we wish
to determine some real-valued numerical property at each node. Given values
at a few of the nodes, how should we fill in the remaining values? A natural
approach that is used in some semi-supervised machine learning approaches
is to fill in the remaining values by assuming that the value at an unlabeled
node i is the (possibly weighted) average of the values at all neighbors of
the node. In this project, we will see how to quickly solve this problem, and
how to efficiently evaluate the sensitivity with respect to different types of
changes in the setup. Of course, in the process we also want to exercise your
knowledge of linear systems, norms, and the like!

Logistics

You are encouraged to work in pairs on this project. You should
produce short report addressing the analysis tasks, and a few short codes
that address the computational tasks. You may use any MATLAB or Octave
functions you might want.

Most of the code in this project will be short, but that does not make it
easy. You should be able to convince both me and your partner that your
code is right. A good way to do this is to test thoroughly. Check residuals,
compare cheaper or more expensive ways of computing the same thing, and

Bindel, Spring 2017 Numerical Analysis (CS 4220)

generally use the computer to make sure you don’t commit silly errors in
algebra or coding. You will also want to make sure that you satisfy the
efficiency constraints stated in the tasks.

Background

The (combinatorial) graph Laplacian matrix occurs often when using linear
algebra to analyze graphs. For an undirected graph on vertices {1,...,n},
the weighted graph Laplacian L € R"*" has entries

—w;j, if (i,7) an edge with weight w;
lij: dizzsz‘m 1=]
0, otherwise.
The unweighted case corresponds to w;; = —1 and d equal to the node degree.

In our problem, we seek to solve problems of the form

Ly Lio| |ug _ 0
Loy Log| |u2 T

where the leading indices correspond to nodes in the graph at which v must
be inferred (i.e. u; is an unknown) and the remaining indices correspond to
nodes in the graph at which u is specified (i.e. up is known, though ry is
not). Note that if ¢ is an index in the first block, then the equation at row i

specifies that
1
U; = z Z IUZ']'U]',
b (ig)eE

i.e. the value at 7 is a weighted average of the neighboring values.

Your tasks

We will use the California road network data from the SNAP data set; to
retrieve it, download the roadNet-CA. txt file from the class web page and
use the loader script included to read in the topology and form the graph
Laplacian. This is a big enough network that you will not want to form
the graph Laplacian or related matrices in dense form. On the other hand,

Bindel, Spring 2017 Numerical Analysis (CS 4220)

because it is a moderate-sized planar graph, sparse Cholesky factorization
on L will work fine.

The README file included with the code describes the baseline code, with
places where you should fill in additional code marked by TASK comments.
We have provided a testing script as part of the baseline code.

Task 1 Fillin ginterp_eval0 with code to solve the graph interpolation
problem. The code already computes index vectors Ta and Ib corresponding
to the free variables (which must be computed) and the boundary values
(which are known). On my laptop, this takes about four seconds. You
should be careful with your parentheses, and you should not attempt an
explicit inverse (which will probably crash your machine).

Task 2 As a set-up for the next steps, we are going to separate the solve
in the first task into two components. The ginterp_factor routine will
compute a sparse Cholesky factorization, while the ginterp_eval routine
will use that factorization to solve the linear system. Make sure that you use
the version of chol that returns a permutation for sparsity!

Task 3 Suppose now that we wish to incrementally add new specified values
to the system. One way to do this would be to update which nodes are free
and which have specified values, then recompute the factorization. We will
try a different approach, which is to solve a bordered system

Ly Ly By Uy 0
Loy Loy DBy U | = | T2
BT BI C| |w f

To enforce additional boundary conditions, we use each column of B; to
indicate a node to constrain, and let the corresponding entry of f be the
value at that node. The By and C matrices will be zero in this case. You can
complete this functionality by filling in the helper function ginterp bsys
and extending ginterp_eval. Your solution should not do any new sparse
matrix factorizations, but will involve O(k) new solves with the pre-computed
factorization of Lq;, where k is the number of new boundary conditions.

Task 4 Beyond using extra variables to enforce new boundary conditions,
we can also use them to update the edge weights in the graph. For example,

Bindel, Spring 2017 Numerical Analysis (CS 4220)

consider an increase of s to the weight of edge (i,7) in the graph. The
Laplacian for the new graph would be

L'=L+s(e;—e;)(ei—e;)T,

and we can write L'u as Lu + (e; — e;)y where v = s(e; — ;) u. Using this
observation, extend the ginterp_bsys command to form a bordered system
that incorporates edge weight modifications as well as additional boundary
conditions, all without re-computing any large sparse factorizations.

Task 5 Using bordered systems lets us recompute the solution quickly after
we adjust the edge weights. But what if we want to compute the sensitivity
of the value at some target node to small changes to any of the edges? That
is, for a target node k, we think of u; as a function of all the edge weights,
and compute the sparse sensitivity matrix

duy, ..
Sij = {3%" (i,j) €€

0, otherwise.

Assuming the u vector has already been computed, the sensitivity computa-
tion requires constant work per edge after one additional linear solve. Fill in
ginterp_deriv to carry out this computation. Note that your code should
ideally use the bordered system formalism to incorporate any new boundary
conditions or edge updates added to the system since the last factorization.

Afternotes

1. Almost all the tasks in this project boil down to block factorization,
using sparse factorizations, and sensitivity analysis. Nothing should
take many lines of code if you do it right. Nonetheless, the project
is not trivial — so ask questions! Office hours and Piazza are your
friends.

2. If you follow the intended path, none of the computations should be
too expensive. However, the road network is large enough that you will
cause yourself serious pain if you attempt to form it as a dense matrix.
You may also run into trouble if you attempt a direct factorization
without permuting for sparsity.

