
Chapter 1

Power Tools of the Trade

§1.1 Vectors and Plotting

§1.2 More Vectors, More Plotting, and Now Matrices

§1.3 Building Exploratory Environments

§1.4 Error

§1.5 Designing Functions

§1.6 Structure Arrays and Cell Arrays

§1.7 More Refined Graphics

Matlab is a matrix-vector-oriented system that supports a wide range of activity that is crucial to the
computational scientist. In this chapter we get acquainted with this system through a collection of examples
that sets the stage for the proper study of numerical computation. The Matlab environment is very easy
to use and you might start right now by running demo. Our introduction in this chapter previews the central
themes that occur with regularity in the following chapters.

We start with the exercise of plotting. Matlab has an extensive array of visualization tools. But even
the simplest plot requires setting up a vector of function values, and so very quickly we are led to the many
vector-level operations that Matlab supports. Our mission is to build up a linear algebra sense to the
extent that vector-level thinking becomes as natural as scalar-level thinking. Matlab encourages this in
many ways, and plotting is the perfect start-up topic. The treatment is spread over two sections.

Building environments that can be used to explore mathematical and algorithmic ideas is the theme of
§1.3. A pair of random simulations is used to illustrate how Matlab can be used in this capacity.

In §1.4 we learn how to think and reason about error. Error is a fact of life in computational science,
and our examples are designed to build an appreciation for two very important types of error. Mathematical
errors result when we take what is infinite or continuous and make it finite or discrete. Rounding errors arise
because floating-point representation and arithmetic is inexact.
§1.5 is devoted to the art of designing effective functions. The user-defined function is a fundamental

building block in scientific computation. More complicated data structures are discussed in §1.6, while in
the last section we point to various techniques that can be used to enrich the display of visual data.

1.1 Vectors and Plotting

Suppose we want to plot the function f(x) = sin(2πx) across the interval [0, 1]. In Matlab there are three
components to this task.

• A vector of x-values that range across the interval must be set up:

0 = x1 < x2 < · · · < xn = 1.

1
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• The function must be evaluated at each x-value:

yk = f(xk), k = 1, . . . , n.

• A polygonal line that connects the points (x1, y1), . . . , (xn, yn) must be displayed.

If we take 21 equally spaced x-values, then the result looks like the plot shown in Figure 1.1. The plot is
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Figure 1.1 A crude plot of sin(2πx)

“crude” because the polygonal effect is noticeable in regions where the function is changing rapidly. But
otherwise the graph looks quite good. Our introduction to Matlab begins with the details of the plotting
process and the vector computations that go along with it. The sin(2πx) example is used throughout because
it is simple and structured. Exploiting that structure leads naturally to some vector operations that are well
supported in the Matlab environment.

1.1.1 Setting Up Vectors

When you invoke the Matlab system, you enter the command window and are prompted to enter commands
with the symbol “>>”. For example,

>> x = [10.1 20.2 30.3]

Matlab is an interactive environment and it responds with

x =

10.1000 20.2000 30.3000

>>

This establishes x as a length-3 row vector. Square brackets delineate the vector and spaces separate the
components. On the other hand, the exchange

>> x = [ 10.1; 20.2; 30.3]

x =

10.1000

20.2000

30.3000
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establishes x as a length-3 column vector. Again, square brackets define the vector being set up. But this
time semicolons separate the component entries and a column vector is produced.

In general, Matlab displays the consequence of a command unless it is terminated with a semicolon.
Thus,

>> x = [ 10.1; 20.2; 30.3];

sets up the same column 3-vector as in the previous example, but there is no echo that displays the result.
However, the dialog

x = [10.1; 20.2; 30.3];

x

x =

10.1000

20.2000

30.3000

shows that the contents of a vector can be displayed merely by entering the name of the vector. Even if one
component in a vector is changed with no terminating semicolon, Matlab displays the whole vector:

x = [10.1; 20.2; 30.3];

x(2) = 21

x =

10.1000

21.0000

30.3000

It is clear that when dealing with large vectors, a single forgotten semicolon can result in a deluge of displayed
output.

To change the orientation of a vector from row to column or column to row, use an apostrophe. Thus,

x = [10.1 20.2 30.3]’

establishes x as a length-3 column vector. Placing an apostrophe after a vector effectively takes its transpose.
The plot shown in Figure 1.1 involves the equal spacing of n = 21 x-values across [0, 1]; that is

x = [0 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 ...

.55 .60 .65 .70 .75 .80 .85 .90 .95 1.0 ]

The ellipsis symbol “...” permits the entry of commands that occupy more than one line.
It is clear that for even modest values of n, we need other mechanisms for setting up vectors. Naturally

enough, a for-loop can be used:

n = 21;

h = 1/(n-1);

for k=1:n

x(k) = (k-1)*h;

end

This is a Matlab script. It assigns the same length-21 vector to x as before and it brings up an important
point.

In Matlab, variables are not declared by the user but are created on a
need-to-use basis by a memory manager. Moreover, from Matlab’s point
of view, every simple variable is a complex matrix indexed from unity.
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Scalars are 1-by-1 matrices. Vectors are “skinny” matrices with either one row or one column. We have
much more to say about “genuine” matrices later. Our initial focus is on real vectors and scalars.

In the preceding script, n, h, k, and x are variables. It is instructive to trace how x “turns into” a vector
during the execution of the for-loop. After one pass through the loop, x is a length-1 vector (i.e., a scalar).
During the second pass, the reference x(2) prompts the memory manager to make x a 2-vector. During the
third pass, the reference x(3) prompts the memory manager to make x a 3-vector. And so it goes until by
the end of the loop, x has length 21. It is a convention in Matlab that this kind of vector construction
yields row vectors.

The Matlab zeros function is handy for setting up the shape and size of a vector prior to a loop that
assigns it values. Thus,

n = 21;

h = 1/(n-1);

x = zeros(1,n);

for k=1:n;

x(k) = (k-1)*h;

end

computes x as row vector of length-21 and initializes the values to zero. It then proceeds to assign the appro-
priate value to each of the 21 components. Replacing x = zeros(1,n) with the command x = zeros(n,1)

sets up a length-21 column vector. This style of vector set-up is recommended for two reasons. First, it
forces you to think explicitly about the orientation and length of the vectors that you are working with. This
reduces the chance for “dimension mismatch” errors when vectors are combined. Second, it is more efficient
because the memory manager does not have to “work” so hard with each pass through the loop.

Matlab supplies a length function that can be used to probe the length of any vector. To illustrate its
use, the script

u = [10 20 30];

n = length(u);

v = [10;20;30;40];

m = length(v);

u = [50 60];

p = length(u);

assigns the values of 3, 4, and 2 to n, m, and p, respectively.
This brings up another important feature of Matlab. It supports a very extensive help facility. For

example, if we enter

help length

then Matlab responds with

LENGTH Number of components of a vector.

LENGTH(X) returns the length of vector X. It is equivalent

to MAX(SIZE(X)).

So extensive and well structured is the help facility that it obviates the need for us to go into excessive
detail when discussing many of Matlab’s capabilities. Get in the habit of playing around with each new
Matlab feature that you learn, exploring the details via the help facility. Start right now by trying

help help

Here in Chapter 1 there are many occasions to use the help facility as we proceed to acquire enough familiarity
with the system to get started. Before continuing, you are well advised to try

help who

help whos

help clear
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to learn more about the management of memory. We have already met a number of Matlab language
features and functions. You can organize your own mini-review by entering

help for

help zeros

help ;

help []

1.1.2 Regular Vectors

Regular vectors arise so frequently that Matlab has a number of features that support their construction.
With the colon notation it is possible to establish row vectors whose components are equally spaced. The
command

x = 20:24

is equivalent to

x = [ 20 21 22 23 24]

The spacing between the component values is called the stride and the vector x has unit stride. Nonunit
strides can also be specified. For example,

x = 20:2:29;

This stride-2 vector is the same as

x = [20 22 24 26 28]

Negative strides are also permissible. The assignment

x = 10:-1:1

is equivalent to

x = [ 10 9 8 7 6 5 4 3 2 1]

As seen from the examples, the general use of the colon notation has the form

〈Starting Index〉:〈Stride〉:〈Bounding Index〉

If the starting index is beyond the bounding index, then the empty vector is produced:

x = 3:2

x =

[]

The empty vector has length zero and is denoted with a square bracket pair with nothing in between.
The colon notation also works with nonintegral values. The command

x = 0:.05:1

sets up a length-21 row vector with the property that xi = (i− 1)/20, i = 1, . . . , 21. Alternatively, we could
multiply the vector 0:20 by the scalar .05:

x = .05*(0:20)

However, if nonintegral strides are involved, then it is preferable to use the linspace function. If a and b

are real scalars, then

x = linspace(a,b,n)
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returns a row vector of length n whose kth entry is given by

xk = a + (k − 1) ∗ (b− a)/(n− 1).

For example,

x = linspace(0,1,21)

is equivalent to

x = [0 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 ...

.55 .60 .65 .70 .75 .80 .85 .90 .95 1.0 ]

In general, a reference to linspace has the form

linspace(〈Left Endpoint〉,〈Right Endpoint〉,〈Number of Points〉)

Logarithmic spacing is also possible. The assignment

x = logspace(-2,3,6);

is the same as x = [ .01 .1 1 10 100 1000]. More generally, x = logspace(a,b,n) sets

xk = 10a+(b−a)(k−1)/(n−1), k = 1, . . . , n

and is equivalent to

m = linspace(a,b,n);

for k=1:n

x(k) = 10^m(k);

end

The linspace and logspace functions bring up an important detail. Many of Matlab’s functions can
be called with a reduced parameter list that is often useful in simple, canonical situations. For example,
linspace(a,b) is equivalent to linspace(a,b,100)and logspace(a,b) is equivalent to logspace(a,b,50).
Make a note of these shortcuts as you become acquainted with Matlab’s many features.

So far we have not talked about how Matlab displays results except to say that if a semicolon is left off
the end of a statement, then the consequences of that statement are displayed. Thus, if we enter

x = .123456789012345*logspace(1,5,5)’

then the vector x is displayed according to the active format. For example,

x =

1.0e+04 *

0.0001

0.0012

0.0123

0.1235

1.2346

The preceding is the short format. The long, short e, and long e formats are also handy as depicted
in Figure 1.2. The short format is active when you first enter Matlab. The format command is used to
switch formats. For example,

format long

It is important to remember that the display of a vector is independent of its internal floating point repre-
sentation, something that we will discuss in §1.4.4.
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short long short e long e

1.0e+14 *

0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000

0.0001
0.0012
0.0123
0.1235
1.2346

1.0e+14 *

0.00000000000001
0.00000000000012
0.00000000000123
0.00000000001235
0.00000000012346

0.00000000123457
0.00000001234568
0.00000012345679
0.00000123456789
0.00001234567890

0.00012345678901
0.00123456789012
0.01234567890123
0.12345678901234
1.23456789012345

1.2346e+00
1.2346e+01
1.2346e+02
1.2346e+03
1.2346e+04

1.2346e+05
1.2346e+06
1.2346e+07
1.2346e+08
1.2346e+09

1.2346e+10
1.2346e+11
1.2346e+12
1.2346e+13
1.2346e+14

1.234567890123450e+00
1.234567890123450e+01
1.234567890123450e+02
1.234567890123450e+03
1.234567890123450e+04

1.234567890123450e+05
1.234567890123450e+06
1.234567890123450e+07
1.234567890123450e+08
1.234567890123450e+09

1.234567890123450e+10
1.234567890123450e+11
1.234567890123450e+12
1.234567890123450e+13
1.234567890123450e+14

Figure 1.2 The display of .123456789012345*logspace(1,15,15)’

1.1.3 Evaluating Functions

We return to the task of plotting sin(2πx). Matlab comes equipped with a host of built-in functions
including sin. (Enter help elfun to see the available elementary functions.) The script

n = 21;

x = linspace(0,1,n);

y = zeros(1,n);

for k=1:n

y(k) = sin(2*pi*x(k));

end

sets up a vector of sine values that correspond to the values in x. But many of the built-in functions like
sin accept vector arguments, and the preceding loop can be replaced with a single reference as follows:

n = 21;

x = linspace(0,1,n);

y = sin(2*pi*x);

The act of replacing a loop in Matlab with a single vector-level operation will be referred to as vectorization
and has three fringe benefits:

• Speed. Many of the built-in Matlab functions provide the results of several calls faster if called once
with the corresponding vector argument(s).

• Clarity. It is often easier to read a vectorized Matlab script than its scalar-level counterpart.

• Education. Scientific computing on advanced machines requires that one be able to think at the vector
level. Matlab encourages this and, as the title of this book indicates, we have every intention of
fostering this style of algorithmic thinking.

As a demonstration of the vector-level manipulation that Matlab supports, we dissect the following script:
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m = 5; n = 4*m+1;

x = linspace(0,1,n); a = x(1:m+1);

y = zeros(1,n);

y(1:m+1) = sin(2*pi*a);

y(2*m+1:-1:m+2) = y(1:m);

y(2*m+2:n) = -y(2:2*m+1);

which sets up the same vector y as before but with one-fourth the number of scalar sine evaluations. The
idea is to exploit symmetries in the table shown in Figure 1.3. The script starts by assigning to a a subvector

k xk sin(xk)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

0
18
36
54
72
90

108
126
144
162
180
198
216
234
252
270
288
306
324
342
360

0.000
0.309
0.588
0.809
0.951
1.000
0.951
0.809
0.588
0.309
0.000

-0.309
-0.588
-0.809
-0.951
-1.000
-0.951
-0.809
-0.588
-0.309
-0.000

Figure 1.3 Selected values of the sine function (xk in degrees)

of x. In particular, the assignment to a is equivalent to

a = [0.00 0.05 0.10 0.15 0.20 0.25]

In general, if v is a vector of integers that are valid subscripts for a row vector z, then

w = z(v);

is equivalent to

for k=1:length(v)

w(k) = z(v(k));

end

The same idea applies to column vectors. Extracted subvectors have the same orientation as the parent
vector.

Assignment to a subvector is also legal provided the named subscript range is valid. Thus,

y(1:m+1) = sin(2*pi*a);

is equivalent to
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for k=1:m+1

y(k) = sin(2*pi*a(k));

end

Now comes the first of two mathematical exploitations. The sine function has the property that

sin
(π

2
+ x

)
= sin

(π

2
− x

)
.

Thus,





sin(10h)
sin(9h)
sin(8h)
sin(7h)
sin(6h)




=





sin(0h)
sin(h)
sin(2h)
sin(3h)
sin(4h)




h = 2π/20.

Note that the components on the left should be stored in reverse order in y(7:11), while the components
on the right have already been computed and are housed in y(1:5). (See Figure 1.3.) The assignment

y(m+1:2*m+1) = y(m:-1:1);

establishes the necessary values in y(7:11).
At this stage, y(1:2*m+1) contains the sine values from [0, π] that are required. To obtain the remaining

values, we exploit a second trigonometric identity:

sin(π + x) = − sin(x).

We see that this implies





sin(11h)
sin(12h)
sin(13h)
sin(14h)
sin(15h)
sin(16h)
sin(17h)
sin(18h)
sin(19h)
sin(20h)





= −





sin(h)
sin(2h)
sin(3h)
sin(4h)
sin(5h)
sin(6h)
sin(7h)
sin(8h)
sin(9h)
sin(10h)





h = 2π/20.

The sine values on the left belong in y(12:21) while those on the right have already been computed and
occupy y(2:11). Hence, the construction of y(1:21) is completed with the assignment

y(2*m+2:n) = -y(2:2*m+1);

(See Figure 1.3.)
Why go though such contortions when y = sin(2*pi*linspace(0,1,21)) is so much simpler? The

reason is that more often than not, function evaluations are expensive and one should always be searching
for relationships that reduce their number. Of course, sin is not expensive. But the vector computations
detailed in this subsection above are instructive because we must learn to be sparing when it comes to the
evaluation of functions.

1.1.4 Displaying Tables

Any vector can be displayed by merely typing its name and leaving off the semicolon. However, sometimes a
more customized output is preferred, and for that a facility with the disp and sprintf functions is required.
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But before we can go any further we must introduce the concept of a script file. Already, our scripts are
getting too long and too complicated to assemble line-by-line in the command window. The time has come
to enlist the services of a text editor and to store the command sequence in a file that can then be executed.

To illustrate the idea, we set up a script file that can be used to display the table in Figure 1.3. We start
by entering the following into a file named SineTable.m:

% Script File: SineTable

% Prints a short table of sine evaluations.

clc

n = 21;

x = linspace(0,1,n);

y = sin(2*pi*x);

disp(’ ’)

disp(’ k x(k) sin(x(k))’)

disp(’------------------------’)

for k=1:21

degrees = (k-1)*360/(n-1);

disp(sprintf(’ %2.0f %3.0f %6.3f ’,k,degrees,y(k)));

end

disp( ’ ’);

disp(’x(k) is given in degrees.’)

disp(sprintf(’One Degree = %5.3e Radians’,pi/180))

The .m suffix is crucial, for then the preceding command sequence is executed merely by entering SineTable

at the prompt:

>> SineTable

This displays the table shown in Figure 1.3, assuming that Matlab can find SineTable.m. This is assured
if the file is in the current working directory or if path is properly set. Review what you must know about
key file organization by entering help dir cd ls lookfor.

Focusing on SineTable itself, there are a number of new features that we must explain. The script begins
with a sequence of comments indicating what happens when it is run. Comments in Matlab begin with
the percent symbol “%”. Aside from enhancing readability, the lead comments are important because they
are displayed in response to a help enquiry. That is,

help SineTable

Use type to list the entire contents of a file, e.g.,

type SineTable

The clc command clears the command window and places the cursor in the home position. (This is
usually a good way to start a script that is to generate command window output.) The disp command has
the form

disp(〈string〉)

Strings in Matlab are enclosed by single quotes. The commands

disp(’ ’)

disp(’ k x(k) sin(x(k))’)

disp(’------------------------’)

are used to print a blank line, a heading, and a dashed line.
The sprintf command is used to produce a string that includes the values of named variables. It has

the form

sprintf(〈String with Format Specifications〉,〈List-of-Variables〉)
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A variable must be listed for each format. Sample format insertions include %5.0f, %8.3f, and %10.6e. The
first integer in a format specification is the total width of the field. The second number specifies how many
places are allocated to the fractional part. In the script, the command

disp(sprintf(’ %2d %3.0f %6.3f ’,k,degrees,y(k)));

prints a line with three numbers. The three numbers are stored in k, degrees, and y(k). The value of k is
printed as an integer while degrees is printed with a decimal point but with no digits to the right of the
decimal point. On the other hand, y(k) is printed with three decimal places. The e format is used to specify
mantissa/exponent style. For example,

disp(sprintf(’One Degree = %5.3e Radians’,pi/180))

This produces the output of the form

One Degree = 1.745e-02 Radians

If x is a vector then

disp(sprintf(’ %5.3e ’,x))

displays all the components of x on a single line, each with 5.3e format.

1.1.5 A Note About fprintf

It is sometimes handy to use fprintf instead of the combinations of disp and sprintf. Consider the
fragement

disp(’ ’)

disp(’ k x(k) sin(x(k))’)

disp(’------------------------’)

for k=1:21

degrees = (k-1)*360/(n-1);

disp(sprintf(’ %2.0f %3.0f %6.3f ’,k,degrees,y(k)));

end

disp( ’ ’);

disp(’x(k) is given in degrees.’)

disp(sprintf(’One Degree = %5.3e Radians’,pi/180))

taken from the script SinePlot above. This is equivalent to

fprintf(’\n k x(k) sin(x(k))\n------------------------\n’)

for k=1:21

degrees = (k-1)*360/(n-1);

fprintf(’ %2.0f %3.0f %6.3f \n’,k,degrees,y(k));

end

fprintf( ’ \nx(k) is given in degrees.\nOne Degree = %5.3e Radians’,pi/180)

The carriage return command “\n” effecively says “start a new line of output”.

1.1.6 A Simple Plot

We are now in a position to solve the plotting problem posed at the beginning of this section. The script

n = 21; x = linspace(0,1,n); y = sin(2*pi*x);

plot(x,y)

title(’The Function y = sin(2*pi*x)’)

xlabel(’x (in radians)’)

ylabel(’y’)
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Plot of sin(2*pi*x) based upon n = 400 points.

Figure 1.4 A smooth plot of sin(2πx)

reproduces Figure 1.1. It draws a polygonal line in a figure that connects the vertices (xk, yk), k = 1:21 in
order. In its most simple form, plot takes two vectors of equal size and plots the second versus the first. The
scaling of the axes is done automatically. The title, xlabel, and ylabel functions enable us to “comment”
the plot. Each requires a string argument.

To produce a better plot with no “corners,” we increase n so that the line segments that make up the
graph are sufficiently short, thereby rendering the impression of a genuine curve. For example,

n = 200;

x = linspace(0,1,n);

y = sin(2*pi*x);

plot(x,y)

title(’The function y = sin(2*pi*x)’)

xlabel(’x (in radians)’)

ylabel(’y’)

produces the plot displayed in Figure 1.4. In general, the smoothness of a displayed curve depends on the
spacing of the underlying sample points, screen granularity, and the vision of the observer. Here is a script
file that produces a sequence of increasingly refined plots:

% Script File: SinePlot

% Displays increasingly smooth plots of sin(2*pi*x).

close all

for n = [4 8 12 16 20 50 100 200 400]

x = linspace(0,1,n);

y = sin(2*pi*x);

plot(x,y)

title(sprintf(’Plot of sin(2*pi*x) based upon n = %3.0f points.’,n))

pause(1)

end

There are four new features to discuss. The close all command closes all windows. It is a good idea to
begin script files that draw figures with this command so as to start with a “clean slate.” Second, notice
the use of a general vector in the specification of the for-loop. The count variable n takes on the values
in the specified vector one at a time. Third, observe the use of sprintf in the reference to title. This
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enables us to report the number of points associated with each plot. Finally, the fragment makes use of
the pause function. In general, a reference of the form pause(s) holds up execution for approximately s

seconds. Because a sequence of plots is produced in the preceding example, the pause(1) command permits
a 1-second viewing of each plot.

Problems

P1.1.1 The built-in functions like sin accept vector arguments and return vectors of values. If x is an n vector, then

y =

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

abs(x)

sqrt(x)

exp(x)

log(x)

sin(x)

cos(x)

asin(x)

acos(x)

atan(x)

9

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

;

⇒ yi =
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>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

|xi|√
xi, xi ≥ 0

exi

log(xi), xi > 0
sin(xi)
cos(xi)
arcsin(xi), −1 ≤ xi ≤ 1
arccos(xi), −1 ≤ xi ≤ 1
arctan(xi)

9

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

;

, i = 1:n.

The vector x can be either a row vector or a column vector and y has the same shape. Write a script file that plots these
functions in succession with two-second pauses in between the plots.

P1.1.2 Define the function

f(x) =

8

>

>

<

>

>

:

p

1 − (x − 1)2 0 ≤ x ≤ 2
p

1 − (x − 3)2 2 < x ≤ 4
p

1 − (x − 5)2 4 < x ≤ 6
p

1 − (x − 7)2 6 < x ≤ 8

.

Set up a length-201 vector y with the property that yi = f(8 ∗ (i − 1)/200) for i = 1:201.

1.2 More Vectors, More Plotting, and Now Matrices

We continue to refine our vector intuition by considering several additional plotting situations. New control
structures are introduced and some of Matlab’s matrix algebra capabilities are presented.

1.2.1 Vectorizing Function Evaluations

Consider the problem of plotting the rational function

f(x) =




1 +

x

24

1− x

12
+

x2

384





8

across the interval [0, 1]. (This happens to be an approximation to the function ex.) Here is a scalar approach:

n = 200;

x = linspace(0,1,n);

y = zeros(1,n);

for k=1:n

y(k) = ((1 + x(k)/24)/(1 - x(k)/12 + (x(k)/384)*x(k)))^8;

end

plot(x,y)

However, by using vector operations that are available in Matlab, it is possible to replace the loop with a
single, vector-level command:
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% Script File: ExpPlot

% Examines the function f(x) = ((1 + x/24)/(1 - x/12 + x^2/384))^8

% as an approximation to exp(z) across [0,1].

close all

x = linspace(0,1,200);

num = 1 + x/24;

denom = 1 - x/12 + (x/384).*x;

quot = num./denom;

y = quot.^8;

plot(x,y,x,exp(x))

The assignment to y involves the familiar operations of vector scale, vector add, and vector subtract, and
the not-so-familiar operations of pointwise vector multiply, pointwise vector divide, and pointwise vector
exponentiation. To clarify each of these operations, we break the script down into more elemental steps:

z = (1/24)*x;

num = 1 + z;

w = x/384;

q = w.*x;

denom = 1 - z/2 + q;

quot = num./denom;

y = quot.^8;

Matlab supports scalar-vector multiplication. The command

z = (1/24)*x;

multiplies every component in x by (1/24) and stores the result in z. The vector z has exactly the same
length and orientation as x. The command

num = 1 + z;

adds 1 to every component of z and stores the result in num. Thus num = 1 + [20 30 40] and num = [21

31 41] are equivalent. Strictly speaking, scalar-plus-vector is not a legal vector space operation, but it is a
very handy Matlab feature.

Now let us produce the vector of denominator values. The command

w = x/384

is equivalent to

w = (1/384)*x

It is also the same as w = x*(1/384). The command

q = w.*x

makes use of pointwise vector multiplication and produces a vector q with the property that each component
is equal to the product of the corresponding components in w and x. Thus

q = [2 3 4].*[20 30 50]

is equivalent to

q = [40 90 200]

The same rules apply when the two operands are column vectors. The key is that the vectors to be multiplied
have to be identical in length and orientation. The command
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Figure 1.5 A plot of tan(x)

denom = 1 - z/2 + q

sets denom(i) to 1 - z(i)/2 + q(i) for all i. Vector addition, like vector subtraction, requires both
operands to have the same length and orientation.

The pointwise division quotient = num./denom performs as expected. The ith component of quotient
is set to num(i)/denom(i). Lastly, the command

y = quotient.^8

raises each component in quotient to the 8th power and assembles the results in the vector y.

1.2.2 Scaling and Superpositioning

Consider the plotting of the function tan(x) = sin(x)/ cos(x) across the interval [−π/2, 11π/2]. This is
interesting because the function has poles at points where the cosine is zero. The script

x = linspace(-pi/2,11*pi/2,200);

y = tan(x);

plot(x,y)

produces a plot with minimum information because the autoscaling feature of the plot function must deal
with an essentially infinite range of y-values. This can be corrected by using the axis function:

x = linspace(-pi/2,11*pi/2,200);

y = tan(x);

plot(x,y)

axis([-pi/2 9*pi/2 -10 10])

The axis function is used to scale manually the axes in the current plot, and it requires a 4-vector whose
values define the x and y ranges. In particular,

axis([xmin xmax ymin ymax])

imposes the x-axis range xmin ≤ x ≤ xmax and a y-axis range ymin ≤ y ≤ ymax. In our example, the
[−10, 10] range in the y-direction is somewhat arbitrary. Other values would work. The idea is to choose the
range so that the function’s poles are dramatized without sacrificing the quality of the plot in domains where
it is nicely behaved. (See Figure 1.5.) We mention that the command axis by itself returns the system to
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the original autoscaling mode.
Another way to produce the same graph is to plot the first branch and then to reuse the function

evaluations for the remaining branches:

% Script File: TangentPlot

% Plots the function tan(x), -pi/2 <= x <= 9pi/2

close all

x = linspace(-pi/2,pi/2,40); y = tan(x); plot(x,y)

ymax = 10;

axis([-pi/2 9*pi/2 -ymax ymax])

title(’The Tangent Function’), xlabel(’x’), ylabel(’tan(x)’)

hold on

for k=1:4

xnew = x+ k*pi;

plot(xnew,y);

end

hold off

This script has a number of new features that require explanation. The hold on command effectively tells
Matlab to superimpose all subsequent plots on the current figure window. Each time through the for-loop,
a different branch is plotted. The axis scaling is frozen during these computations. The xnew calculation
produces the required x-domain for each branch plot. During the kth pass through the loop, the expression
xnew + k*pi establishes a vector of equally spaced values across the interval

[−π/2 + kπ,−π/2 + (k + 1)π].

The same vector of tan-evaluations is used in each branch plot. Observe that with superpositioning we
produce a plot with only one-fifth the number of tan evaluations that our initial solution required.

The hold off command shuts down the superpositioning feature and sets the stage for “normal” plotting
thereafter.

Another way that different graphs can be superimposed in the same plot is by calling plot with an
extended parameter list. Suppose we want to plot the functions sin(2πx) and cos(2πx) across the interval
[0, 1] and to mark the point where they intersect. The script

x = linspace(0,1,200); y1 = sin(2*pi*x); y2 = cos(2*pi*x);

plot(x,y1)

hold on

plot(x,y2,’-’)

plot([1/8 5/8],[1/sqrt(2) -1/sqrt(2)],’*’)

hold off

accomplishes this task. (See Figure 1.6.) The first three-argument call to plot uses a dashed line to produce
the graph of cos(2πx). Other line designations are possible (e.g., ’–’,’-.’). The second three-argument call
to plot places an asterisk at the intersection points (1/8, 1/

√
2) and (5/8,−1/

√
2). Other point designations

are possible (e.g., ’+’, ’.’, ’o’.) The key idea is that when plot is used to draw a graph, an optional third
parameter can be included that specifies the line style. This parameter is a string that specifies the “nature
of the pen” that is doing the drawing. Colors may also be specified. (See §1.7.6.) The superpositioning can
also be achieved as follows:

% Script File: SineAndCosPlot

% Plots the functions sin(2*pi*x) and cos(2*pi*x) across [0,1]

% and marks their intersection.

close all

x = linspace(0,1,200); y1 = sin(2*pi*x); y2 = cos(2*pi*x);

plot(x,y1,x,y2,’--’,[1/8 5/8],[1/sqrt(2) -1/sqrt(2)],’*’)
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Figure 1.6 Superpositioning

This illustrates plot’s “multigraph” capability. The syntax is as follows:

plot(〈First Graph Specification〉,...,〈Last Graph Specification〉)

where each graph specification has the form

〈Vector〉,〈Vector〉,〈String (optional)〉

If some of the string arguments are missing, then Matlab chooses them in a way that fosters clarity in the
overall plot.

1.2.3 Polygons

Suppose that we have a polygon with n vertices. If x and y are column vectors that contain the coordinate
values, then

plot(x,y)

does not display the polygon because (xn, yn) is not connected to (x1, y1). To rectify this we merely “tack
on” an extra copy of the first point:

x = [x;x(1)];

y = [y;y(1)];

plot(x,y)

Thus, the three points (1, 2), (4,−2), and (3, 7) could be represented with the three-vectors x = [1 4 3]

and y = [2 -2 7]. The x and y updates yield x = [1 4 3 1] and y = [2 -2 7 2]. Plotting the revised
y against the revised x displays the triangle with the designated vertices.

The preceding “concatenation” of a component to a vector is a special case of a general operation whereby
vectors can be glued together. If r1, r2,...,rm are row vectors, then

v = [ r1 r2 ... rm]

is also a row vector obtained by placing the component vectors r1,...,rm side by side. For example,

v = [linspace(1,10,10) linspace(20,100,9)];

is equivalent to

v = [ 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100];
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Similarly, if c1, c2,..., cm are column vectors, then

v = [ c1 ; c2 ; ... ; cm]

is also a column vector, obtained by stacking c1,...,cm.

Continuing with our polygon discussion, assume that we have executed the commands

t = linspace(0,2*pi,361);

c = cos(t);

s = sin(t);

plot(c,s)

axis off equal

The object displayed is a regular 360-gon with “radius” 1. The command axis equal ensures that the
x-distance per pixel is the same as the y-distance per pixel. This is important in this application because a
regular polygon would not look regular if the two scales were different.

With the preceding sine/cosine vectors computed, it is possible to display various other regular n-gons
simply by connecting appropriate subsets of points. For example,

x = [c(1) c(121) c(241) c(361)];

y = [s(1) s(121) s(241) s(361)];

plot(x,y)

plots the equilateral triangle whose vertices are at the 0o, 120o, and 240o points along the unit circle. This
kind of non-unit stride subvector extraction can be elegantly handled in Matlab using the colon notation.
The preceding triplet of commands is equivalent to

x = c(1:120:361);

y = s(1:120:361);

plot(x,y)

More generally, if sides is a positive integer that is a divisor of 360, then

x = c(1:(360/sides):361);

y = s(1:(360/sides):361);

plot(x,y)

plots a regular polygon with that number of sides. Here is a script that displays nine regular polygons in
nine separate subwindows:

% Script File: Polygons

% Plots selected regular polygons.

close all

theta = linspace(0,2*pi,361);

c = cos(theta);

s = sin(theta);

k=0;

for sides = [3 4 5 6 8 10 12 18 24]

stride = 360/sides;

k=k+1;

subplot(3,3,k)

plot(c(1:stride:361),s(1:stride:361))

axis equal

end

Figure 1.7 shows what is produced when this script is executed.
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Figure 1.7 Regular polygons

The key new feature in Polygons is subplot. The command subplot(3,3,k) says “break up the current
figure window into a 3-by-3 array of subwindows, and place the next plot in the kth one of these.” The
subwindows are indexed as follows:

1 2 3

4 5 6

7 8 9

In general, subplot(m,n,k) splits the current figure into an m-row by n-column array of subwindows that
are indexed left to right, top to bottom.

1.2.4 Some Matrix Computations

Let’s consider the problem of plotting the function

f(x) = 2 sin(x) + 3 sin(2x) + 7 sin(3x) + 5 sin(4x)

across the interval [−10, 10]. The scalar-level script

n = 200;

x = linspace(-10,10,n)’;

y = zeros(n,1);

for k=1:n

y(k) = 2*sin(x(k)) + 3*sin(2*x(k)) + 7*sin(3*x(k)) + 5*sin(4*x(k));

end

plot(x,y)

title(’f(x) = 2sin(x) + 3sin(2x) + 7sin(3x) +5sin(4x)’)

does the trick. (See Figure 1.8.) Notice that x and y are column vectors. The sin evaluations can be
vectorized giving this superior alternative:

n = 200;

x = linspace(-10,10,n)’;

y = 2*sin(x) + 3*sin(2*x) + 7*sin(3*x) + 5*sin(4*x);

plot(x,y)

title(’f(x) = 2sin(x) + 3sin(2x) + 7sin(3x) +5sin(4x)’)
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Figure 1.8 A sum of sines

But any linear combination of vectors is “secretly” a matrix-vector product. That is,
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Matlab supports matrix-vector multiplication, and the script

A = [3 5 8 1; 1 0 3 6; 4 3 3 8; 7 8 1 7; 2 4 1 0; 8 2 1 9];

y = A*[2;3;7;5];

shows how to initialize a small matrix and engage it in a matrix-vector product. Note that the matrix is
assembled row by row with semicolons separating the rows. Spaces separate the entries within a row. An
ellipsis (...) can be used to spread a long command over more than one line, which is sometimes useful for
clarity:

A = [3 5 8 1;...

1 0 3 6;...

4 3 3 8;...

7 8 1 7;...

2 4 1 0;...

8 2 1 9];

y = A*[2;3;7;5];

In the sum-of-sines plotting problem, the vector y can also be constructed as follows:

n = 200; m = 4;

x = linspace(-10,10,n)’; A = zeros(n,m);

for j=1:m

for k=1:n

A(k,j) = sin(j*x(k));

end

end

y = A*[2;3;7;5];

plot(x,y)

title(’f(x) = 2sin(x) + 3sin(2x) + 7sin(3x) + 5sin(4x)’)
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This illustrates how a matrix can be initialized at the scalar level. But a matrix is just an aggregation of its
columns, and Matlab permits a column-by-column synthesis, bringing us to the final version of our script:

% Script File: SumOfSines

% Plots f(x) = 2sin(x) + 3sin(2x) + 7sin(3x) + 5sin(4x)

% across the interval [-10,10].

close all

x = linspace(-10,10,200)’;

A = [sin(x) sin(2*x) sin(3*x) sin(4*x)];

y = A*[2;3;7;5];

plot(x,y)

title(’f(x) = 2sin(x) + 3sin(2x) + 7sin(3x) + 5sin(4x)’)

An expression of the form

[ 〈Column 1〉 〈Column 2〉 ... 〈Column m〉 ]

is a matrix with m columns. Of course, the participating column vectors must have the same length.

Another way to initialize A is to use a single loop whereby each pass sets up a single column:

n = 200;

m = 4;

A = zeros(n,m);

for j=1:m

A(:,j) = sin(j*x);

end

The notation A(:,j) names the jth column of A. Notice that the size of A is established with a call to zeros.
The size function can be used to determine the dimensions of any active variable. (Recall that all variables
are treated as matrices.) Thus, the script

A = [1 2 3;4 5 6];

[r,c] = size(A);

assigns 2 (the row dimension) to r and 3 (the column dimension) to c. Many Matlab functions return
more than one value and size is our first exposure to this. Note that the output values are enclosed with
square brackets.

Matrices can also be built up by row. In SumOfSines, the kth row of A is given by sin(x(k)*(1:4)) so
we also initialize A as follows:

n = 200;

m = 4;

A = zeros(n,m);

for k=1:n

A(k,:) = sin(x(k)*(1:m));

end

The notation A(k,:) identifies the kth row of A.

As a final example, suppose that we want to plot both of the functions

f(x) = 2 sin(x) + 3 sin(2x) + 7 sin(3x) + 5 sin(4x)

g(x) = 8 sin(x) + 2 sin(2x) + 6 sin(3x) + 9 sin(4x)

in the same window. Obviously, a double application of the preceding ideas solves the problem:
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n = 200;

x = linspace(-10,10,n)’;

A = [sin(x) sin(2*x) sin(3*x) sin(4*x)];

y1 = A*[2;3;7;5];

y2 = A*[8;2;6;9];

plot(x,y1,x,y2)

But a set of matrix-vector products that involve the same matrix is “secretly” a single matrix-matrix product:

[
1 2
3 4

] [
5
7

]
=

[
19
43

]

[
1 2
3 4

] [
6
8

]
=

[
22
50

]






≡
[

1 2
3 4

] [
5 6
7 8

]
=

[
19 22
43 50

]
.

Since Matlab supports matrix-matrix multiplication, our script transforms to

n = 200;

x = linspace(-10,10,n)’;

A = [sin(x) sin(2*x) sin(3*x) sin(4*x)];

y = A*[2 8;3 2;7 6;5 9];

plot(x,y(:,1),x,y(:,2))

But the plot function can accept matrix arguments. The command

plot(x,y(:,1),x,y(:,2))

is equivalent to

plot(x,y)

and so we obtain

% Script File: SumOfSines2

% Plots the functions

% f(x) = 2sin(x) + 3sin(2x) + 7sin(3x) + 5sin(4x)

% g(x) = 8sin(x) + 2sin(2x) + 6sin(3x) + 9sin(4x)

% across the interval [-10,10].

close all

n = 200;

x = linspace(-10,10,n)’;

A = [sin(x) sin(2*x) sin(3*x) sin(4*x)];

y = A*[2 8;3 2;7 6;5 9];

plot(x,y)

In general, plotting a matrix against a vector is the same thing as plotting each of the matrix columns against
the vector. Of course, the row dimension of the matrix must equal the length of the vector.

It is also possible to plot one matrix against another. If X and Y have the same size, then the corresponding
columns will be plotted against each other with the command plot(X,Y).

Finally, we mention the “backslash” operator that can be invoked whenever the solution to a linear
system of algebraic equations is required. For example, suppose we want to find scalars α1, . . . , α4 so that if

f(x) = α1 sin(x) + α2 sin(2x) + α3 sin(3x) + α4 sin(4x),

then f(1) = −2, f(2) = 0, f(3) = 1, and f(4) = 5. These four stipulations imply
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α1 sin(1) + α2 sin(2) + α3 sin(3) + α4 sin(4) = −2
α1 sin(2) + α2 sin(4) + α3 sin(6) + α4 sin(8) = 0
α1 sin(3) + α2 sin(6) + α3 sin(9) + α4 sin(12) = 1
α1 sin(4) + α2 sin(8) + α3 sin(12) + α4 sin(16) = 5

That is,





sin(1) sin(2) sin(3) sin(4)
sin(2) sin(4) sin(6) sin(8)
sin(3) sin(6) sin(9) sin(12)
sin(4) sin(8) sin(12) sin(16)


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
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

 =


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−2
0
1
5



 .

Here is how to set up and solve this 4-by-4 linear system:

X = [1 2 3 4 ; 2 4 6 8 ; 3 6 9 12 ; 4 8 12 16];

Z = sin(X);

f = [-2; 0; 1; 5]

alpha = Z\f

Observe that sin applied to a matrix returns the matrix of corresponding sine evaluations. This is typical of
many of Matlab’s built-in functions. For linear system solving, the backslash operator requires the matrix
of coefficients on the left and the right hand side vector (as a column) on the right. The solution to the
preceding example is

α =





−0.2914
−8.8454
−18.8706
−11.8279



 .

Problems

P1.2.1 Suppose z = [10 40 20 80 30 70 60 90]. Indicate the vectors that are specified by z(1:2:7), z(7:-2:1), and z([3 1

4 8 1]).

P1.2.2 Suppose z = [10 40 20 80 30 70 60 90]. What does this vector look like after each of these commands?

z(1:2:7) = zeros(1,4)

z(7:-2:1) = zeros(1,4)

z([3 4 8 1]) = zeros(1,4)

P1.2.3 Given that the commands

x = linspace(0,1,200);

y = sqrt(1-x.^2);

have been carried out, show how to produce a plot of the circle x2 +y2 = 1 without any additional square roots or trigonometric
evaluations.

P1.2.4 Produce a single plot that displays the graphs of the functions sin(kx) across [0,2π], k = 1:5.

P1.2.5 Assume that m is an initialized positive integer. Write a Matlab script that plots in a single window the functions x,
x2, x3, . . . , xm across the interval [0,1].

P1.2.6 Assume that x is an initialized Matlab array and that m is a positive integer. Using the ones function, the pointwise
array multiply operator .*, and Matlab’s ability to scale and add arrays, write a fragment that computes an array y with the
property that the ith component of y has the following value:

yi =

m
X

k=0

xk
i

k!
.
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P1.2.7 Write a Matlab fragment to plot the following ellipses in the same window:

Ellipse 1: x1(t) = 3 + 6 cos(t) y1(t) = −2 + 9 sin(t)
Ellipse 2: x2(t) = 7 + 2 cos(t) y2(t) = 8 + 6 sin(t)

P1.2.8 Consider the following Matlab script:

x = linspace(0,2*pi);

y = sin(x);

plot(x/2,y)

hold on

for k=1:3

plot((k*pi)+x/2,y)

end

hold off

What function is plotted and what is the range of x?

P1.2.9 Assume that x, y, and z are Matlab arrays initialized as follows:

x = linspace(0,2*pi,100);

y = sin(x);

z = exp(-x);

Write a Matlab fragment that plots the function e−x sin(x) across the interval [0,4π]. The fragment should not involve
any additional calls to sin or exp. Hint: exploit the fact that sin has period 2π and that the exponential function satisfies
ea+b = eaeb .

P1.2.10 Modify the script SumOfSines so that f(x) = 2 sin(x) + 3 sin(2x) + 7 sin(3x) + 5 sin(4x) is plotted in one window and
its derivative in another. Use subplot placing one window above the other. Your implementation should not involve any loops
and should have appropriate titles on the plots.

1.3 Building Exploratory Environments

A consequence of Matlab’s friendliness and versatility is that it encourages the exploration of mathematical
and algorithmic ideas. Many computational scientists like to precede the rigorous analysis of a problem with
Matlab-based experimentation. We use three examples to show this, learning many new features of the
system as we go along.

1.3.1 The Up/Down Sequence

Suppose x1 is a given positive integer and that for k ≥ 1 we define the sequence x1, x2, . . . as follows:

xk+1 =






xk/2 if xk is even

3xk + 1 if xk is odd
.

Thus, if x1 = 7, then the following sequence unfolds:

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, . . . .

We will call this the up/down sequence for obvious reasons. Note that it cycles once the value of 1 is reached.
A number of interesting questions are suggested:

• Does the sequence always reach the cycling stage?

• Let n be the smallest index for which xn = 1. How does n behave as a function of the initial value x1?

• Are there any systematic patterns in the sequence worth noting?

Our goal is to develop a script file that can be used to shed light on these and related issues.
We start with a script that solicits a starting value and then generates the sequence, assembling the

values in a vector x:
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x(1) = input(’Enter initial positive integer:’);

k = 1;

while (x(k) ~= 1)

if rem(x(k),2) == 0

x(k+1) = x(k)/2;

else

x(k+1) = 3*x(k)+1;

end

k = k+1;

end

The input command is used to set up x(1). It has the form

input(〈string message〉)

and prompts for keyboard input. For example,

Enter initial positive integer:

Whatever number you type, it is assigned to x(1).
After x(1) is initialized, the generation of the sequence takes place under the auspices of a while-loop.

Each pass through the loop requires a test of the current x(k) in accordance with the rule for x(k+1) given
earlier. This is handled by an if-then-else.

Let’s look at the details. In Matlab, a test of the form x(k)==10 renders a one if it is true and a zero
if it is false.1 All the usual comparisons are supported:

Notation Meaning

< less than
<= less than or equal
== equal
>= greater than or equal
> greater than

~= not equal

A while-loop has the form

while 〈Condition〉
〈Statements〉

end

An if-then-else is structured as follows:

if 〈Condition〉
〈Statements〉

else

〈Statements〉
end

Both of these control structures operate in the usual way. The condition is numerically valued, and is
interpreted as true if it is nonzero.

The remainder function rem is used to check whether or not x(k) is even. Assuming that a and b are
positive integers, a call of the form rem(a,b) returns the remainder when b is divided into a.

Now one of the things we do not know is whether or not the up/down sequence reaches 1. To guard
against the production of an unacceptably large x-vector, we can put a limit on how many terms to generate.
Setting that limit to 500 and presizing x to that length, we obtain

1Remember, there is no boolean type in Matlab.
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x = zeros(500,1);

x(1) = input(’Enter initial positive integer:’);

k = 1;

while ((x(k) ~= 1) & (k < 500))

if rem(x(k),2) == 0

x(k+1) = x(k)/2;

else

x(k+1) = 3*x(k)+1;

end

k = k+1;

end

n = k;

x = x(1:n);

The index of the first sequence member that equals 1 is assigned to n and x is “trimmed” to that length
with the assignment x = x(1:n). Notice the use of the and operator & in the while-loop condition. The
and, or, and not operations are all possible in Matlab :

Notation Meaning
& and
| or
~ not

xor exclusive or

The usual definitions apply with the understanding that 1 and 0 are used for true and false respectively.
Thus (x(k) == 1) & (k < 500)) has the value of 1 if x(k) equals 1 and k is strictly less than 500. If either
of these conditions is false, then the logical expression equals 0.

Computing x(1:n) brings us to the stage where we must decide how to display it and its properties. Of
course, we could display the vector simply by leaving off the semicolon in x = x(1:n);. Alternatively, we
can make use of fprintf’s vectorizing capability:

fprintf(’%10d\n’,x)

When a vector like x is passed to fprintf in this way. it just keeps cycling through the format string until
every vector component is processed.

Among the numerical properties of x that are interesting are the maximum value and the number of
integers ≤ x1 that are “hit” by the up/down process:

[xmax,imax] = max(x);

disp(sprintf(’\n x(%1.0f) = %1.0f is the max.’,imax,xmax))

density = sum(x<=x(1))/x(1);

disp(sprintf(’ The density is %5.3f.’,density))

When the max function is applied to a vector, it returns the maximum value and the index where it occurs.
It is also possible to use max in an expression. For example,

GrowthFactor = max(x)/x(1)

assigns to GrowthFactor the ratio of the largest value in x to x(1). Notice the use of the 1.0f format. For
integers greater than one digit in length, extra space is accorded as necessary. This ensures that there is no
gap between the displayed subscript and the right parenthesis, a small aesthetic point.

The assignment to density requires two explanations. First, it is legal to compare vectors in Matlab.
The comparison x<=x(1) returns a vector of 0’s and 1’s that is the same size as x. If x(k) <= x(1) is true,
then the kth component of this vector is one. The sum function applied to a vector sums its entries. Thus
sum(x<=x(1)) is precisely the number of components in x that are less than or equal to x(1).

Graphical display is also in order and can help us appreciate the “flow of events” as the sequence winds
its way to unity:
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close all

figure

plot(x)

title(sprintf(’x(1) = %1.0f, n = %1.0f’,x(1),n));

figure

plot(sort(x,’descend’))

title(’Sequence values sorted.’)

I = find(rem(x(1:n-1),2));

if length(I)>1

figure

plot((1:n),zeros(1,n),I+1,x(I+1),I+1,x(I+1),’*’)

title(’Local Maxima’)

end

This script involves a number of new features. First, the command plot(x) plots the components of x

against their indices. It is equivalent to plot((1:n)’,x).
Second, the sort function is used to produce a plot of the sequence with its values ordered from small

to large. If v is a vector with length m, then u = sort(v) permutes the values in v and assigns them to u so
that

u1 ≤ u2 ≤ u3 ≤ · · · ≤ um.

The command sort(x,’descend’) produces a “big-to-little” sort.
Third, the expression rem(x(1:n-1),2) == 1 returns a 0-1 vector that designates which components of

x(1:n-1) are odd. The function rem, like many of Matlab’s built-in functions, accepts vector arguments
and merely returns a vector of the function applied to each of the components. The find function returns
a vector of subscripts that designate which entries in a vector are nonzero. Thus, if

x(1:n-1) = [ 17 52 26 13 40 20 10 5 16 8 4 2]’

and r = rem(x(1:n-1),2) and I = find(r), then

r(1:n-1) = [ 1 0 0 1 0 0 0 1 0 0 0 0]’

and I = [ 1 4 8]’. If the vector I is nonempty, then a plot of I+1 is produced showing the pattern of the
sequence’s “local maxima.” (The vector I+1 contains the indices of values in x(1:n-1) that are produced
by the “up operation” 3xk + 1.)

The last thing to discuss is figure. In all prior examples, our plots have appeared in a single window.
New plots erase old ones. But with each reference to figure, a new window is opened. Figures are indexed
from 1 and so figure(1) refers to a plot of x, figure(2) designates the plot of x sorted, and if I is nonempty,
then figure(3) contains a plot of its local maxima. The close all statement clears all windows and ensures
that the figure indexing starts at 1.

The script UpDown incorporates all of these features and by repeatedly running it we could bolster our
intuition about the up/down sequence. To make this enterprise more convenient, we write a second script
file that invokes UpDown:

% Script File: RunUpDown

% Environment for studying the up/down sequence.

% Stores selected results in file UpDownOutput.

while(input(’Another Example? (1=yes, 0=no)’))

diary UpDownOutput

UpDown

diary off

if (input(’Keep Output? (1=yes, 0=no)’)~=1)

delete UpDownOutput

end

end
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By using this script we can keep trying new starting values until one of special interest is found. The
while-loop keeps running as long as you want to test another starting value. Before UpDown is run, the

diary UpDownOutput

command creates a file called UpDownOutput. Everything that is now written to the command window during
the execution of UpDown is now also written to UpDownOutput. After UpDown is run, we turn off this feature
with

diary off

The script then asks if the output should be kept. If not, then the file UpDownOutput is deleted. Note that
it is possible to record several possible runs of UpDown, but as soon as the if condition is true, everything
is erased. The advantage of writing output to a file is that it can then be edited to make it look nice. For
example,

For starting value x(1) = 511, the UpDown sequence is

x(1:62) =

511 1534 767 2302 1151 3454 1727 5182 2591 7774

3887 11662 5831 17494 8747 26242 13121 39364 19682 9841

29524 14762 7381 22144 11072 5536 2768 1384 692 346

173 520 260 130 65 196 98 49 148 74

37 112 56 28 14 7 22 11 34 17

52 26 13 40 20 10 5 16 8 4

2 1

The figures from the final UpDown run are available for printing as well.

1.3.2 Random Processes

Many simulations performed by computational scientists involve random processes. In order to implement
these on a computer, it is necessary to be able to generate sequences of random numbers. In Matlab this is
done with the built-in functions rand and randn. The command x = rand(1000,1) creates a length-1000
column vector of real numbers chosen randomly from the interval (0, 1). The uniform(0, 1) distribution is
used, meaning that if 0 < a < b < 1, then the fraction of values that fall in the range [a, b] will be about b−a.
The randn function should be used if a sequence of normally distributed random numbers is desired. The
underlying probability distribution is the normal(0, 1) distribution. A brief, graphically oriented description
of these functions should clarify their statistical properties.

Histograms are a common way of presenting statistical data. Here is a script that illustrates rand and
randn using this display technique:

% Script File: Histograms

% Histograms of rand(1000,1) and randn(1000,1).

close all

subplot(2,1,1)

x = rand(1000,1);

hist(x,30)

axis([-1 2 0 60])

title(’Distribution of Values in rand(1000,1)’)

xlabel(sprintf(’Mean = %5.3f. Median = %5.3f.’,mean(x),median(x)))

subplot(2,1,2)

x = randn(1000,1);

hist(x,linspace(-2.9,2.9,100))

title(’Distribution of Values in randn(1000,1)’)

xlabel(sprintf(’Mean = %5.3f. Standard Deviation = %5.3f’,mean(x),std(x)))
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Figure 1.9 The uniform and normal distributions

(See Figure 1.9.) Notice that rand picks values uniformly from [0, 1] while the distribution of values in
randn(1000,1) follows the familiar “bell shaped curve.” The mean, median, and standard deviation func-
tions mean, median, and std are referenced. The histogram function hist can be used in several ways
and the script shows two of the possibilities. A reference like hist(x,30) reports the distribution of the
x-values according to where they “belong” with respect to 30 equally spaced bins spread across the interval
[min(x), max(x)]. The bin locations can also be specified by passing hist a vector in the second param-
eter position (e.g., hist(x,linspace(-2.9,2.9,100))). This is done for the histogram of the normally
distributed data.

Building on rand and randn through translation and scaling, it is possible to produce random sequences
with specified means and variances. For example,

x = 10 + 5*rand(n,1);

generates a sequence of uniformly distributed numbers from the interval (10, 15). Likewise,

x = 10 + 5*randn(n,1);

produces a sequence of normally distributed random numbers with mean 10 and standard deviation 5.
It is possible to generate random integers using rand (or randn) and the floor function. The command

z = floor(6*rand(n,1)+1) computes a random vector of integers selected from {1, 2, 3, 4, 5, 6} and assigns
them to z. This is because floor rounds to −∞. The command z = ceil(6*x) is equivalent because ceil

rounds toward +∞. In either case, the vector z looks like a recording of n dice throws. Notice that floor

and ceil accept vector arguments and return vectors of the same size. (See also fix and round.) Here is a
script that simulates 1000 rolls of a pair of dice, displaying the outcome in histogram form:

% Script File: Dice

% Simulates 1000 rollings of a pair of dice.

close all

First = 1 + floor(6*rand(1000,1));

Second = 1 + floor(6*rand(1000,1));

Throws = First + Second;

hist(Throws, linspace(2,12,11));

title(’Outcome of 1000 Dice Rolls.’)
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Figure 1.10 A target

Random simulations can be used to answer “nonrandom” questions. Suppose we throw n darts at the
circle-in-square target depicted in Figure 1.10. Assume that the darts land anywhere on the square with
equal probability and that the square has side 2 and center (0, 0). After a large number of throws, the
fraction of the darts that land inside the circle should be approximately equal to π/4, the ratio of the circle
area to the square’s area. Thus,

π ≈ 4
Number of Throws Inside the Circle

Total Number of Throws
.

By simulating the throwing of a large number of darts, we can produce an estimate of π. Here is a script
file that does just that:

0 50 100 150 200 250 300 350 400 450 500
3.08

3.1

3.12

3.14

3.16

3.18

3.2

3.22

3.24

3.26
Monte Carlo Estimate of Pi = 3.157

Hundreds of Trials

Figure 1.11 A Monte Carlo estimate of π
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% Script File: Darts

% Estimates pi using random dart throws.

close all

rand(’seed’,.123456);

NumberInside = 0;

PiEstimate = zeros(500,1);

for k=1:500

x = -1+2*rand(100,1);

y = -1+2*rand(100,1);

NumberInside = NumberInside + sum(x.^2 + y.^2 <= 1);

PiEstimate(k) = (NumberInside/(k*100))*4;

end

plot(PiEstimate)

title(sprintf(’Monte Carlo Estimate of Pi = %5.3f’,PiEstimate(500)));

xlabel(’Hundreds of Trials’)

(See Figure 1.11.) Notice that the estimated values are gradually improving with n, but that the “progress”
towards 3.14159... is by no means steady or fast. Simulation in this spirit is called Monte Carlo. The
command rand(’seed’,.123456) starts the random number sequence with a prescribed seed. This enables
one to repeat the random simulation with exactly the same sequence of underlying random numbers.

The any and all functions indicate whether any or all of the components of a vector are nonzero. Thus,
if x and y are vectors of the same length, then a = any( x.̂2 + y.̂2 <= 1) assigns to a the value “1” if
there is at least one (xi, yi) in the unit circle and “0” otherwise. Similarly, b = all( x.̂2 + y.̂2 <= 1)

assigns “1” to b if all the (xi, yi) are in the unit circle and assigns “0” otherwise.

1.3.3 Polygon Smoothing

If x and y are n + 1-vectors (of the same type) and x1 = xn+1 and y1 = yn+1, then plot(x,y,x,y,’*’)

displays the polygon obtained by connecting the points (x1, y1), . . . , (xn+1, yn+1) in order. If we compute

xnew = [(x(1:n)+x(2:n+1))/2;(x(1)+x(2))/2];

ynew = [(y(1:n)+y(2:n+1))/2;(y(1)+y(2))/2];

plot(xnew,ynew)

then a new polygon is displayed that is obtained by connecting the side midpoints of the original polygon.
We wish to explore what happens when this process is repeated.

The first issue that we have to deal with is how to specify the “starting polygon” such as the one displayed
in Figure 1.12. One approach is to use the ginput command that supports mouseclick input. It returns the
x-y-coordinates of the click with respect to the current axis. Under the control of a for-loop an assignment
of the form [x(k),y(k)] = ginput(1) could be used to places the coordinates of the kth vertex in x(k)

and y(k), e.g.,

n = input(’Enter the number of edges:’);

figure

axis([0 1 0 1])

axis square

hold on

x = zeros(n,1);

y = zeros(n,1);

for k=1:n

title(sprintf(’Click in %2.0f more points.’,n-k+1))

[x(k) y(k)] = ginput(1);

plot(x(1:k),y(1:k), x(1:k),y(1:k),’*’)

end
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x = [x;x(1)];

y = [y;y(1)];

plot(x,y,x,y,’*’)

title(’The Original Polygon’)

hold off

The for-loop displays the sides of the polygon as it is “built up.” If we did not care about this kind of
graphical feedback as we click in the vertices, then the command [x,y] = ginput(n) could be used. This
just stores the coordinates of the next n mouseclicks in x and y. Notice how we set up an “empty” figure
with a prescribed axis in advance of the data acquisition.

Now that vertices of the starting polygon are available, the connect-the-midpoint process can begin:

k=0;

xlabel(’Click inside window to smooth, outside window to quit.’)

[a,b] = ginput(1);

v = axis;

while (v(1)<=a) & (a<=v(2)) & (v(3)<=b) & (b<=v(4));

k = k+1;

x = [(x(1:n)+x(2:n+1))/2;(x(1)+x(2))/2];

y = [(y(1:n)+y(2:n+1))/2;(y(1)+y(2))/2];

m = max(abs([x;y])); x = x/m; y = y/m;

figure

plot(x,y,x,y,’*’)

axis square

title(sprintf(’Number of Smoothings = %1.0f’,k))

xlabel(’Click inside window to smooth, outside window to quit.’)

v = axis;

[a,b] = ginput(1);

end

The command v = axis assigns to v a 4-vector [xmin, xmax, ymin, ymax] that specifies the x and y ranges of
the current figure. The while-loop that oversees the process terminates as soon as the solicited mouseclick
falls outside the plot window. The polygons are scaled so that they are roughly the same size.

Once the execution of the loop is completed, the evolution of the smoothed polygons can be reviewed
by using figure. For example, the command figure(2) displays the polygon after two smoothings. (See
Figure 1.13.) This works because a new figure is generated each pass through the while-loop so in effect,
each plot is saved. The script Smooth encapsulates the whole process.

Problems
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The Original Polygon

Figure 1.12 The initial polygon
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Figure 1.13 A smoothed polygon

P1.3.1 Suppose {xi} is the up/down sequence with x1 = m. Let g(m) be the index of the first xi that equals one. Plot the
values of g for m = 1:200.

P1.3.2 Consider the quadratic equation ax2 + bx + c = 0. Let P1 be the probability that this equation has complex roots,
given that the coefficients are random variables with uniform(0,1) distribution. Let P1(n) be a Monte Carlo estimate of this
probability based on n trials. Let P2 be the probability that this equation has complex roots given that the coefficients are
random variables with normal(0,1) distribution. Let P2(n) be a Monte Carlo estimate of this probability based on n trials.
Write a script that prints a nicely formatted table that reports the value of P1(n) and P2(n) for n = 100:100:800.

P1.3.3 Write a simulation that estimates the volume of {(x1, x2, x3, x4) : x2
1+x2

2+x2
3+x2

4 ≤ 1}, the unit sphere in 4-dimensional
space.

P1.3.4 Let S = { (x, y) | − 1 ≤ x ≤ 1, −1 ≤ y ≤ 1}. Let S0 be the set of points in S that are closer to the point (.2, .4) than
to an edge of S. Write a Matlab script that estimates the area of S0.

1.4 Error

Errors abound in scientific computation. Rounding errors attend floating point arithmetic, terminal screens
are granular, analytic derivatives are approximated with divided differences, a polynomial is used in lieu
of the sine function, the data acquired in a lab are correct to only three significant digits, etc. Life in
computational science is like this, and we have to build up a facility for dealing with it. In this section we
focus on the mathematical errors that arise through discretization and the rounding errors that arise due to
finite precision arithmetic.

1.4.1 Absolute and Relative Error

If x̃ approximates a scalar x, then the absolute error in x̃ is given by |x̃− x| while the relative error is given
by |x̃− x|/|x|. If the relative error is about 10−d, then x̃ has approximately d correct significant digits in
that there exists a number τ having the form

τ = ±(. 00 . . .0︸ ︷︷ ︸
d zeros

nd+1nd+2 . . .)× 10g

so that x̃ = x + τ . (Here, g is some integer.)
As an exercise in relative and absolute error, let’s examine the quality of the Stirling approximation

Sn =
√

2πn
(n

e

)n

, e = exp(1).
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to the factorial function n! = 1 · 2 · · ·n. Here is a script that produces a table of errors:

% Script File: Stirling

% Prints a table showing error in Stirling’s formula for n!

clc

disp(’ Stirling Absolute Relative’)

disp(’ n n! Approximation Error Error’)

disp(’----------------------------------------------------------------’)

e = exp(1);

nfact = 1;

for n = 1:13

nfact = n*nfact;

s = sqrt(2*pi*n)*((n/e)^n);

abserror = abs(nfact - s);

relerror = abserror/nfact;

s1 = sprintf(’ %2.0f %10.0f %13.2f’,n,nfact,s);

s2 = sprintf(’ %13.2f %5.2e’,abserror,relerror);

disp([s1 s2])

end

Notice how the strings s1 and s2 are concatenated before they are displayed. In general, you should think
of a string as a row vector of characters. Concatenation is then just a way of obtaining a new row vector
from two smaller ones. This is the logic behind the required square bracket.

The command clc clears the command window and moves the cursor to the top. This ensures that the
table produced is profiled nicely in the command window. Here it is:

Stirling Absolute Relative

n n! Approximation Error Error

----------------------------------------------------------------

1 1 0.92 0.08 7.79e-02

2 2 1.92 0.08 4.05e-02

3 6 5.84 0.16 2.73e-02

4 24 23.51 0.49 2.06e-02

5 120 118.02 1.98 1.65e-02

6 720 710.08 9.92 1.38e-02

7 5040 4980.40 59.60 1.18e-02

8 40320 39902.40 417.60 1.04e-02

9 362880 359536.87 3343.13 9.21e-03

10 3628800 3598695.62 30104.38 8.30e-03

11 39916800 39615625.05 301174.95 7.55e-03

12 479001600 475687486.47 3314113.53 6.92e-03

13 6227020800 6187239475.19 39781324.81 6.39e-03

1.4.2 Taylor Approximation

The partial sums of the exponential satisfy

ex =
n∑

k=0

xk

k!
+

eη

(n + 1)!
xn+1

for some η in between 0 and x. The mathematics says that if we take enough terms, then the partial sums
converge. The script ExpTaylor explores this by plotting the partial sum relative error as a function of n.
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% Script File: ExpTaylor

% Plots, as a function of n, the relative error in the

% Taylor approximation 1 + x + x^2/2! +...+ x^n/n! to exp(x).

close all

nTerms = 50;

for x=[10 5 1 -1 -5 -10]

figure

term = 1; s = 1; f = exp(x)*ones(nTerms,1);

for k=1:nTerms, term = x.*term/k; s = s+ term; err(k) = abs(f(k) - s); end

relerr = err/exp(x);

semilogy(1:nTerms,relerr)

ylabel(’Relative Error in Partial Sum.’)

xlabel(’Order of Partial Sum.’)

title(sprintf(’x = %5.2f’,x))

end
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Figure 1.14 Error in Taylor approximations to ex, x = 10

When plotting numbers that vary tremendously in range, it is useful to use semilogy. It works just like
plot, only the base-10 log of the y-vector is displayed. ExpTaylor produces six figure windows, one each for
the six x-values. For example, the x = 10 plot is in figure 1. By entering the command figure(1), this plot
is “brought up” by making the Figure 1 window the active window. It could then (for example) be printed.
(See Figures 1.14 and 1.15.)

1.4.3 Rounding Errors

The plots produced by ExpTaylor reveal that the mathematical convergence theory does not quite apply.
The errors do not go to zero as the number of terms in the series increases. In each case, they seem to
“bottom out” at some small value. Once that happens, the incorporation of more terms into the partial sum
does not make a difference. Moreover, by comparing the plots in Figures 1.14 and 1.15, we observe that
where the relative error bottoms out depends on x. The relative error for x = −10 is much worse than for
x = 10.

An explanation of this phenomenon requires an understanding of floating point arithmetic. Like it or
not, numerical computation involves working with an inexact computer arithmetic system. This will force us
to rethink the connections between mathematics and the development of algorithms. Nothing will be simple
ever again.
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To dramatize this point, consider the plot of a rather harmless looking function: p(x) = (x − 1)6. The
script Zoom graphs this polynomial over increasingly smaller neighborhoods around x = 1, but it uses the
formula

p(x) = x6 − 6x5 + 15x4 − 20x3 + 15x2 − 6x + 1.
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Figure 1.15 Error in Taylor approximations to ex, x = −10

% Script File: Zoom

% Plots (x-1)^6 near x=1 with increasingly refined scale.

% Evaluation via x^6 - 6x^5 + 15x^4 - 20x^3 + 15x^2 - 6x +1

% leads to severe cancelation.

close all

k = 0; n = 100;

for delta = [.1 .01 .008 .007 .005 .003 ]

x = linspace(1-delta,1+delta,n)’;

y = x.^6 - 6*x.^5 + 15*x.^4 - 20*x.^3 + 15*x.^2 - 6*x + ones(n,1);

k = k+1; subplot(2,3,k); plot(x,y,x,zeros(1,n))

axis([1-delta 1+delta -max(abs(y)) max(abs(y))])

end

Notice how the x-axis is plotted and how it is forced to appear across the middle of the window. (See Figure
1.16 for a display of the plots.) As we increase the “magnification,” a very chaotic behavior unfolds. It seems
that p(x) has thousands of zeros!

It turns out that if the plot is based on the formula (x− 1)6 instead of its expansion, then the expected
graph is displayed and this gets right to the heart of the example. Algorithms that are equivalent mathemat-
ically may behave very differently numerically. The time has come to look at floating point arithmetic.

1.4.4 The Floating Point Numbers

A nonzero value x in a base-2 floating point number system has the following form:

x = ±1.b1b2 . . . bt × βe L ≤ e ≤ U
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Figure 1.16 Plots of (x− 1)6 = x6 − 6x5 + 15x4 − 20x3 + 15x2 − 6x + 1 near x = 1

The bits b1, b2, . . . bt make up the mantissa. The exponent e is restricted to the interval [L, U ]. Zero is also a
floating point number and we assume that in its representation both the mantissa and exponent are set to
zero.

We denote the set of floating point numbers by F(t, L, U). To emphasize the finiteness of this set, suppose
t = 2, L = −1 and U = +1. There are twelve positive floating point numbers:

x =






(1.00)2
(1.01)2
(1.10)2
(1.11)2





×






2−1

20

21




 .

The base-2 notation is not difficult. Thus, x = (1.01)2 × 21 represents

(
1 + 0 · 1

2
+ 1 · 1

4

)
× 2 = 2.5

There is a smallest positive floating point number (1.00 × 2−1 = .5) and a largest floating point number
(1.11 × 21 = 3.75). Moreover, the spacing between the floating point numbers is not uniform as can be seen
from this display of the positive portion of F(2,−1, 1):

0

t

1
2

t t t t

1

t t t t

2

t t t

4

Extrapolating from this small example we identify three important numbers associated with F(t, L, U):

m the smallest positive floating point number = 2L.

M the largest positive floating point number = (2− 2−t)2U

eps the distance from 1 to the next largest floating point number = 2−t

Note that if x is a floating point number and 2e < x < 2e+1, then x−2e−t is its left “neighbor” and x+2e−t

is its right neighbor.
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Now let us talk about the errors associated with the F(t, L, U) representation. If x is a real number, then
let fl(x) be the nearest floating point number to x. (Assume the existence of a tie-breaking rule.) Think of
fl(x) as the stored version of x. The following theorem bounds the relative error in fl(x).

Theorem 1 Suppose we are given a set of floating point numbers with mantissa length t and exponent range
[L, U ]. If x ∈ IR satisfies m < |x| < M , then

|fl(x)− x|
|x| ≤ 2−t−1 = eps

Proof Without loss of generality, assume that x is positive and that

x = (1.b1b2 . . . btbt+1 . . .)2 × 2e.

If x is a power of two, then the theorem obviously holds since fl(x) = x and the relative error is zero.
Otherwise we observe that the spacing of the floating point numbers at x is 2e−t. Since fl(x) is the closest
floating number to x, we have

|fl(x)− x| ≤ 1

2
2e−t = 2e−t−1.

From the lower bound βe < x it follows that

|fl(x) − x|
|x| ≤ 2e−t−1

2e
= 2−t−1. �

Another way of saying the same thing is that

fl(x) = x(1 + δ)

where |δ| ≤ eps.
What are the values of t, L and U on a typical computer? For the widely implemented IEEE double

precision format, t = 52, L = −1022 and U = 1023. This representation fits into a 64-bit word because we
need one bit for the sign and because 11 bits are required to store e + 1023. (The last is a clever trick for
encoding the sign of the exponent.)

The quantity eps is referred to as the machine precision (a.k.a. unit roundoff) and is available in
Matlab through the built-in constant eps:

>> What_Is_eps = eps

What_Is_eps =

2.220446049250313e-016

Thus, in the IEEE floating point environment, eps = 2−52 ≈ 10−16.
IEEE floating point arithmetic is carefully designed so that when two floating point numbers are combined

via +, −, ×, or /, then the answer is the nearest floating point number to the exact answer. One way to say
this for any of these four “ops” is

fl(x opy) = (x op y)(1 + δ) |δ| ≤ eps

Thus, there is good relative error for an individual floating point operation. As we shall see, it does not

follow that sequences of floating point operations result in an answer that has O(eps) relative error.
Some simple while-loop computations can be used to glean information about the underlying floating

system. Here is a script that assigns the value of the smallest positive integer so 1 + 1/2p = 1 in floating
point arithmetic:

p = 0; y = 1; z = 1+y;

while z>1

y = y/2;

p = p+1;

z = 1+y;

end
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With IEEE arithmetic, p = 53. Stated another way, 1 + 1/252 can be represented exactly but 1 + 1/253

cannot.
The finiteness of the exponent range has ramifications too. A floating point operation can result in an

answer that is too big to represent. When this happens, it is called floating point overflow and a special
value called inf is produced. Here is a script that assigns to r the smallest positive integer so 2r = inf in
floating point arithmetic:

x = 1;

r = 0;

while x~=inf

x = 2*x;

r = r+1;

end

When IEEE arithmetic is used, r = 1024. In other words, 21023 can be represented but 21024 cannot.
At the other end of the scale, if a floating point operation renders a nonzero result that is too small to

represent, then an underflow results. In light of the fact that the smallest positive floating point number is
m = 2−1022 , we anticipate that the script

x = 1;

q = 0;

while x>0

x = x/2;

q = q+1;

end

would assign -1023 to q. However, the actual value that is assigned to q is 1075. This is because the IEEE
standard implements what is call gradual underflow meaning that the actual smallest floating point number
that can be represented is 2L−t = 2−1022−52 = 2−1074.

Sometimes these are just set to zero. Sometimes they result in program termination. Here is a script
that assigns to q the smallest positive integer so that 1/2q = 0 in floating point arithmetic:

Problems

P1.4.1 The binomial coefficient n-choose-k is defined by
„

n
k

«

=
n!

k!(n − k)!
.

Let Bn,k = Sn/(SkSn−k). Write a script analogous to Stirling that explores the error in Bn,k for the cases (n, k) =
(52,2), (52,3), . . . , (52,13). There are no set rules on output except that it should look nice and clearly present the results.

P1.4.2 The sine function has the power series definition

sin(x) =

∞
X

k=0

(−1)k x2k+1

(2k + 1)!
.

Write a script SinTaylor analogous to ExpTaylor that explores the relative error in the partial sums.

P1.4.3 Write a script that solicits n and plots both sin(x) and

Sn(x) =

n
X

k=0

(−1)k x2k+1

(2k + 1)!

across the interval [0,2π].

P1.4.4 To affirm your understanding of the floating point representation, what is the largest value of n so that n! can be exactly
represented in F(52,−1022,1023)? Show your work.

P1.4.5 On a base-2 machine, the distance between 7 and the next largest floating point number is 2−12. What is the distance
between 70 and the next largest floating point number?

P1.4.6 Assume that x and y are floating point numbers in F(t,−10, 10). What is the smallest possible value of y − x given
that x < 8 < y? (Your answer will involve t.)
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P1.4.7 What is the largest value of k such that 10k can be represented exactly in F(52,−1022,1023)?

P1.4.8 What is the nearest floating point number to 64 on a base-2 computer with 5-bit mantissas? Show work.

P1.4.9 If 127 is the nearest floating point number to 128 on a base-2 computer, then how long is the mantissas? Show work.

1.5 Designing Functions

An ability to write good Matlab functions is crucial. Two examples are used to clarify the essential ideas:
Taylor series and numerical differentiation.

1.5.1 Four Ways to Compute the Exponential of a Vector of Values

Consider once again the Taylor approximation

Tn(x) =

n∑

k=0

xk

k!

to the exponential ex. It is possible to write functions in Matlab, and here is one that encapsulates this
approximation:

function y = MyExpF(x,n)

% y = MyExpF(x,n)

% x is a scalar, n is a positive integer

% and y = n-th order Taylor approximation to exp(x).

term = 1;

y = 1;

for k = 1:n

term = x*term/k;

y = y + term;

end
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Figure 1.17 Relative error in Tn(x)

The function itself must be placed in a separate .m file2 having the same name as the function, e.g., MyExpF.m.
Once that is done, it can be referenced like any of the built-in functions. Thus, the script

2Subfunctions are an exception. Enter help function for details.
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m = 50;

x = linspace(-1,1,m);

y = zeros(1,m);

exact = exp(x);

k = 0;

for n = [4 8 16 20]

for i=1:m

y(i) = MyExpF(x(i),n);

end

RelErr = abs(exact - y)./exact;

k = k+1;

subplot(2,2,k)

plot(x,RelErr)

title(sprintf(’n = %2.0f’,n))

end

plots the relative error in Tn(x) for n = 4, 8, 16, and 20 across [−1, 1]. (See Figure 1.17.)
When writing a Matlab function you must adhere to the following rules and guidelines:

• From the example we infer the following general structure for a Matlab function:

function 〈Output Parameter〉 = 〈Name of Function〉(〈Input Parameters〉)
%

% 〈Comments that completely specify the function.〉
%

〈function body〉

• Somewhere in the function body the desired value must be assigned to the output variable.

• Comments that completely specify the function should be given immediately after the function state-
ment. The specification should detail all input value assumptions (the pre-conditions) and what may
be assumed about the output value (the postconditions).

• The lead block of comments after the function statement is displayed when the function is probed
using help (e.g., help MyExpF).

• The input and output parameters are formal parameters. At the time of the call they are replaced by
the actual parameters.

• All variables inside the function are local and are not part of the Matlab workspace.

• If the function file is not in the current directory, then it cannot be referenced unless the appropriate
path is established. Type help path.

Further experimentation with MyExpF shows that if n = 17, then full machine precision exponentials are
computed for all x ∈ [−1, 1]. With this understanding about the Taylor approximation across [−1, 1], we are
ready to develop a “vector version”:

function y = MyExp1(x)

% y = MyExp1(x)

% x is a column vector and y is a column vector with the property that

% y(i) is a Taylor approximation to exp(x(i)) for i=1:n.

n = 17; p = length(x);

y = ones(p,1);

for i=1:p

y(i) = MyExpF(x(i),n);

end
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This example shows several things: (1) A Matlab function can have vector arguments and can return a
vector, (2) the length function can be used to determine the size of an input vector, (3) one function can
reference another. Here is a script that references MyExp1:

x = linspace(-1,1,50);

exact = exp(x);

RelErr = abs(exact - MyExp1(x’)’)./exact;

Notice the transpose that is required to ensure that the vector passed to MyExp1 is a column vector. The
other transpose is required to make MyExp1(x’) a row vector so that it can be combined with exact. Here
is another implementation that is not sensitive to the shape of x:

function y = MyExp2(x)

% y = MyExp2(x)

% x is an n-vector and y is an n-vector with the same shape

% and the property that y(i) is a Taylor approximation to exp(x(i)), i=1:n.

y = ones(size(x));

nTerms = 17;

term = ones(size(x));

for k=1:nTerms

term = x.*term/k;

y = y + term;

end

The expression ones(size(x)) creates a vector of ones that is exactly the same shape as x. In general, the
command [p,q] = size(A) returns the number of rows and columns in A in p and q, respectively. If such a
2-vector is passed to ones, then the appropriate matrix of ones is established. (The same comment applies
to zeros.) The new implementation “doesn’t care” whether x is a row or column vector. The script

x = linspace(-1,1,50);

exact = exp(x);

RelErr = abs(exact - MyExp2(x))./exact;

produces a vector of relative error exactly the same size as x.
Notice the use of pointwise multiplication. In contrast to MyExp1 which computes the component-level

exponentials one at a time, MyExp2 computes them “at the same time.” In general, Matlab runs faster in
vector mode. Here is a script that quantifies this statement by benchmarking these two functions:

nRepeat = 100;

disp(’ Length(x) Time(MyExp2)/Time(MyExp1)’)

disp(’--------------------------------------------’)

for L = 1000:100:1500

xL = linspace(-1,1,L);

tic

for k=1:nRepeat, y = MyExp1(xL); end

T1 = toc;

tic

for k=1:nRepeat, y = MyExp2(xL); end

T2 = toc;

disp(sprintf(’%6.0f %13.6f ’,L,T2/T1))

end

The script makes use of tic and toc. To time a code fragment, “sandwich” it in between a tic and a toc.
Keep in mind that the clock is discrete and is typically accurate to within a millisecond. Therefore, whatever
is timed should take somewhat longer than a millisecond to execute to ensure reliability. To address this
issue it is sometimes necessary to time repeated instances of the code fragment as above. Here are some
sample results:
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Length(x) Time(MyExp2)/Time(MyExp1)

--------------------------------

1000 0.086525

1100 0.101003

1200 0.104044

1300 0.080007

1400 0.087395

1500 0.082073

It is important to stress that these are sample results. Different timings would result on different computers.
The for-loop implementations in MyExp1 and MyExp2 are flawed in two ways. First, the value of n chosen

is machine dependent. A different n would be required on a computer with a different machine precision.
Second, the number of terms required for an x value near the origin may be considerably less than 17. To
rectify this, we can use a while-loop that keeps adding in terms until the next term is less than or equal to
eps times the size of the current partial sum:

function y = MyExpW(x)

% y = MyExpW(x)

% x is a scalar and y is a Taylor approximation to exp(x).

y = 0;

term = 1;

k=0;

while abs(term) > eps*abs(y)

k = k + 1;

y = y + term;

term = x*term/k;

end

To produce a vector version, we can proceed as in MyExp1 and simply call MyExpW for each component:

function y = MyExp3(x)

% y = MyExp3(x)

% x is a column n-vector and y is a column n-vector with the property that

% y(i) is a Taylor approximation to exp(x(i)) for i=1:n.

n = length(x);

y = ones(n,1);

for i=1:n

y(i) = MyExpW(x(i));

end

Alternatively, we can follow the MyExp2 idea and vectorize as follows:

function y = MyExp4(x)

% y = MyExp4(x)

% x is an n-vector and y is an n-vector with the same shape and the

% property that y(i) is a Taylor approximation to exp(x(i)) for i=1:n.

y = zeros(size(x));

term = ones(size(x));

k = 0;

while any(abs(term) > eps*abs(y))

y = y + term;

k = k+1;

term = x.*term/k;

end
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Observe the use of the any function. It returns a “1” as long as there is at least one component in abs(term)

that is larger than eps times the corresponding term in abs(y). If any returns a zero, then this means that
term is small relative to y. In fact, it is so small that the floating point sum of y and term is y. The
while-loop terminates as this happens.

1.5.2 Numerical Differentiation

Suppose f(x) is a function whose derivative we wish to approximate at x = a. A Taylor series expansion
about this point says that

f(a + h) = f(a) + f ′(a)h +
f ′′(η)

2
h2

for some η ∈ [a, a + h]. Thus,

Dh =
f(a + h)− f(a)

h

provides increasingly good approximations as h gets small since

Dh = f ′(a) + f ′′(η)
h

2
.

Here is a script that enables us to explore the quality of this approach when f(x) = sin(x):

a = input(’Enter a: ’);

h = logspace(-1,-16,16);

Dh = (sin(a+h) - sin(a))./h;

err = abs(Dh - cos(a));

Using this to find the derivative of sin at a = 1, we see the following:

h Absolute Error
1.0e-01 0.0429385533327507
1.0e-02 0.0042163248562708
1.0e-03 0.0004208255078129
1.0e-04 0.0000420744495186
1.0e-05 0.0000042073622750
1.0e-06 0.0000004207468094
1.0e-07 0.0000000418276911
1.0e-08 0.0000000029698852
1.0e-09 0.0000000525412660
1.0e-10 0.0000000584810365
1.0e-11 0.0000011687040611
1.0e-12 0.0000432402169239
1.0e-13 0.0007339159003137
1.0e-14 0.0037069761981869
1.0e-15 0.0148092064444385
1.0e-16 0.5403023058681398

The loss of accuracy may be explained as follows. Any error in the computation of the numerator of Dh is
magnified by 1/h. Let us assume that the values returned by sin are within eps of their true values. Thus,
instead of a precise calculus bound

|Dh − f ′(a)| ≤ h

2
|f ′′(η)|
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as predicted earlier, we have a heuristic bound

|Dh − f ′(a)| ≈ h

2
|f ′′(η)| + 2eps

h
.

The right-hand side incorporates the “truncation error” due to calculus and the computation error due to
roundoff. This quantity is minimized when h = 2

√
eps/|f ′′(η)|.

Let’s package these observations and write a function that does numerical differentiation. The key
analytical detail is the intelligent choice of h. If we have an upper bound on the second derivative of the
form |f ′′(x)| ≤M2, then the truncation error can be bounded as follows:

|Dh − f ′(a)| ≤ M2

2
h. (1.1)

If the absolute error in a computed function evaluation is bounded by δ, then

errD(h) = M2
h

2
+

2δ

h

is a reasonable model for the total error. This quantity is minimized if

hopt = 2

√
δ

M2
,

giving

errD(hopt) = 2
√

δM2.

Here is a function that implements this idea:

function [d,err] = Derivative(f,a,delta,M2)

% f is a handle that references a function f(x) whose derivative

% at x = a is sought. delta is the absolute error associated with

% an f-evaluation and M2 is an estimate of the second derivative

% magnitude near a. d is an approximation to f’(a) and err is an estimate

% of its absolute error.

%

% Usage:

% [d,err] = Derivative(@f,a)

% [d,err] = Derivative(@f,a,delta)

% [d,err] = Derivative(@f,a,delta,M2)

if nargin <= 3

% No derivative bound supplied, so assume the

% second derivative bound is 1.

M2 = 1;

end

if nargin == 2

% No function evaluation error supplied, so

% set delta to eps.

delta = eps;

end

% Compute optimum h and divided difference

hopt = 2*sqrt(delta/M2);

d = (f(a+hopt) - f(a))/hopt;

err = 2*sqrt(delta*M2);
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There are several new syntactic features associated with this implementation. We identify them through a
sequence of examples.

Example 1. Compute the derivative of f(x) = exp(x) at x = 5 . Assume that the exp function returns values
that are correct to machine precision and use the fact that the second derivative of f is bounded by 500:

[der_val,err_est] = Derivative(@exp,5,eps,500)

To hand over a function to Derivative, you pass its handle. This is simply the name of the function preceded
by the “at” symbol “@”. In effect @exp “points” to the exp function. Another aspect of this example is that
functions in Matlab can return more than one item: Just separate the output parameters with commas
and enclose with square brackets.

Example 2. Same as Example 1 only (pretend) that we cannot produce an upper bound on the second
derivative:

[der_val,err_est] = Derivative(@exp,5,eps)

The nargin command makes it possible to have abbreviated calls. In this case, Matlab “knows” that this is
a 2-argument call and substitutes a value for the missing input parameter.

Example 3. Same as Example 1 only you don’t care about the error estimate:

der_val = Derivative(@exp,5,eps,500)

In this case

Example 4. Assuming the existence of

function y = MyF(x,alfa,beta)

y = alfa*exp(beta*x);

estimate the derivative at x = 10 assuming that α = 20 and β = −2:

alfa = 20;

beta = -2;

der_val = Derivative(@(x) MyF(x,alfa,beta),10);

This illustrates the use of the anonymous function idea which is very useful when functions depend on
parameters.

Problems

P1.5.1 It can be shown that

Ch =
f(a + h) − f(a − h)

2h
satisfies

|Ch − f ′(a)| ≤ M3

6
h2

if
|f (3)(x)| ≤ M3

for all x. Model the error in the evaluation of Ch by

errC(h) =
M3h2

6
+ 2

δ

h
.

Generalize Derivative so that it has a 5th optional argument M3 being an estimate of the 3rd derivative. It should compute
f ′(a) using the better of the two approximations Dh and Ch.

P1.5.2 Consider the ellipse P (t) = (x(t), y(t)) with

x(t) = a cos(t)

y(t) = b sin(t)
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and assume that 0 = t1 < t2 < . . . < tn = π/2. Define the points Q1, . . . , Qn by

Qi = (x(ti), y(ti)).

Let Li be the tangent line to the ellipse at Qi. This line is defined by the parametric equations

x(t) = a cos(ti) − a sin(ti)t

y(t) = b sin(ti) + b cos(ti)t.

Next, define the points P0, . . . , Pn by

Pi =

8

<

:

(a,0) i = 0
intersection of Li and Li+1 i = 1 . . . n − 1
(0, b) i = n

.

For your information, if the lines defined by

x1(t) = α1 + β1t

y1(t) = γ1 + δ1t

x2(t) = α2 + β2t

y2(t) = γ2 + δ2t

intersect, then the point of their intersection (x∗, y∗) is given by

x∗ =
β2(α1δ1 − β1γ1) − β1(α2δ2 − β2γ2)

δ1β2 − β1δ2
and y∗ =

δ2(α1δ1 − β1γ1) − δ1(α2δ2 − β2γ2)

δ1β2 − β1δ2
.

Complete the following function:

function [P,Q] = Points(a,b,t)

% a and b are positive, n = length(t)>=2, and 0 = t(1) < t(2) <... < t(n) = pi/2.

% For i=1:n, (Q(i,1),Q(i,2)) is the ith Q-point and (P(i,1),P(i,2)) is the ith P point.

Write a script file that calls Points with a = 5, b = 2, and t = linspace(0,pi/2,4). The script should then plot in one window
the first quadrant portion of the ellipse, the polygonal line that connects the Q points, and the polygonal line that connects the
P points. Use title to display PL and QL, the lengths of these two polygonal lines, i.e., title(sprintf(’ QL = %10.6f PL =

%10.6f ’,QL,PL )).

P1.5.3 Write a Matlab function Ellipse(P,A,theta) that plots the “tilted” ellipse defined by

x(t) = cos(θ)

»

P − A

2
+

P + A

2
cos(t)

–

− sin(θ)
h√

A · P sin(t)
i

y(t) = sin(θ)

»

P − A

2
+

P + A

2
cos(t)

–

+ cos(θ)
h√

A · P sin(t)
i

for 0 ≤ t ≤ 2π. Your implementation should not have any loops.

P1.5.4 For a scalar z and a nonnegative integer n define

f(z, n) =
n

X

k=0

(−1)k z2k+1

(2k + 1)!
.

This is an approximation to the function sin(z). Write a Matlab function y = MySin(x,n) that accepts a vector x and a
nonnegative integer n and returns a vector y with the same size and orientation as x and with the property that yi = f(xi, n)
for i = 1:length(x). The implementation should not involve any loops. Write a script that graphically reports on the relative
error when MySin is applied to x = linspace(.01,pi-.01) for n=3:2:9. Use semilogy and present the four plots in a single
window using subplot. To avoid log(0) problems, plot the maximum of the true relative error and eps. Label the axes. The
title should indicate the value of n and the number of flops required by the call to MySin.

P1.5.5 Using tic and toc, plot the relative error in pause(k) for k = 1:10.

P1.5.6 Complete the following Matlab function

function [cnew,snew] = F(c,s,a,b)

% a and b are scalars with a<b. c and s are row (n+1)-vectors with the property that

% c = cos(linspace(a,b,n+1)) and s = sin(linspace(a,b,n+1))

%

% cnew and snew are column (2n+1)-vectors with the property that

% cnew = cos(linspace(a,b,2*n+1)) and snew = sin(linspace(a,b,2*n+1))
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Your implementation should be vectorized and must make effective use of the trigonometric identities

cos(α + ∆) = cos(α) cos(∆) − sin(α) sin(∆)

sin(α + ∆) = sin(α) cos(∆) + cos(α) sin(∆)

in order to reduce the number of new cosine and sine evaluations. Hint: Let ∆ be the spacing associated with z.

P1.5.7 Complete the following function:

function BookCover(a,b,n)

% a and b are real with b<a. n is a positive integer.

% Let r1 = (a+b)/2 and r2 = (a-b)/2. In the same figure draws the ellipse

%

% (a*cos(t),b*sin(t)) 0<=t<=2*pi,

%

% the "big" circle

%

% (r1*cos(t),r1*sin(t)) 0<=t<=2*pi,

%

% and n "small" circles. The kth small circle should have radius r2 and center

% (r1*cos(2*pi*k/n),r1*sin(2*pi*k/n). A radius making angle -2*pi*k/n should be drawn

% inside the kth small circle.

Use BookCover to draw with correct proportions, the ellipse/circle configuration on the cover of the book.

1.6 Structure Arrays and Cell Arrays

As problems get more complicated it is very important to use appropriate data structures. The choice of a
good data structure can simplify one’s “algorithmic life.” To that end we briefly review two ways that more
advanced data structures can be used in Matlab: structure arrays and cell arrays.

A structure array has fields and values. Thus,

A = struct(’d’,16,’m’,23,’s’,47);

establishes A as a structure array with fields “d”, “m”, and “s”. Such a structure might be handy in a geodesy
application where latitudes and longitudes are measured in degrees, minutes, and seconds. The field values
are accessed with a “dot” notation. The value of A.d is 16, the value of A.m is 23, and the value of A.s is
47. The statement

r = pi*(A.d + A.m/60 + A.s/3600)/180;

assigns to r the radian equivalent of the angle represented by A. The triplet

NYC_Lat = struct(’d’,40,’m’,45,’s’,27);

NYC_Long = struct(’d’,75,’m’,12,’s’,32);

C1 = struct(’name’,’New York’,’lat’,NYC_Lat,’long’,NYC_Long);

establishes C1 as a structure array with three fields. The first field is a string and the last two are structure
arrays. Note that C1.long.d has value 75. One can also have an array of structure arrays:

NYC_Lat = struct(’d’,16,’m’,23,’s’,47);

NYC_Long = struct(’d’,74,’m’,2,’s’,32);

City(1) = struct(’name’,’New York’,’lat’,NYC_Lat,’long’,NYC_Long)

Ith_Lat = struct(’d’,42,’m’,25,’s’,16);

Ith_Long = struct(’d’,76,’m’,29,’s’,41);

City(2) = struct(’name’,’Ithaca’,’lat’,Ith_Lat,’long’,Ith_Long);

In this case, City(2).lat.d has value 42. We mention that a structure array can have an array field and
functions can have input and output parameters that are structure arrays.

A cell array is basically a matrix in which a given entry can be a matrix, a structure array, or a cell array.
If m and n are positive integers, then
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C = cell(m,n)

establishes C as an m-by-n cell array. Cell entries are referenced with curly brackets. Thus, the cell array C

in

C = cell(2,2);

C{1,1} = [1 2 ; 3 4];

C{1,2} = [ 5;6];

C{2,1} = [7 8];

C{2,2} = 9;

M = [C{1,1} C{1,2};C{2,1} C{2,2}]

is a way of representing the 3-by-3 matrix

M =




1 2 5
3 4 6
7 8 9



 .

1.6.1 Three-digit Arithmetic

Structures and strings are nicely reviewed by developing a three-digit, base-10 floating point arithmetic
simulation package. Let’s assume that the exponent range is [−9, 9] and that we use a 4-field structure to
represent each floating point number as described in the following specification:

function f = Represent(x)

% f = Represent(x)

% Yields a 3-digit floating point representation of f:

%

% f.mSignBit mantissa sign bit (0 if x>=0, 1 otherwise)

% f.m mantissa (= f.m(1) + f.m(2)/10 + f.m(3)/100)

% f.eSignBit the exponent sign bit (0 if exponent nonnegative, 1 otherwise)

% f.e the exponent (-9<=f.e<=9)

%

% If x is outside of [-9.99*10^9,9.99*10^9], f.m is set to inf.

% If x is in the range (-1.00*10^-9,1.00*10^-9) f is the representation of zero

% in which both sign bits are 0, e is zero, and m = [0 0 0].

Thus, f = Represent(-237000) is equivalent to

f = struct(’mSignBit’,1,’m’,[2 3 7],’eSignBit’,0,’e’,6)

Complementing Represent is the following function, which can take a three-digit representation and compute
its value:

function x = Convert(f)

% x = Convert(f)

% f is a is a representation of a 3-digit floating point number.

% x is the value of f.

% Overflow situations

if (f.m == inf) & (f.mSignBit==0)

x = inf;

return

end

if (f.m == inf) & (f.mSignBit==1)

x = -inf;

return

end
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% Mantissa value

mValue = (100*f.m(1) + 10*f.m(2) + f.m(3))/100;

if f.mSignBit==1

mValue = -mValue;

end

% Exponent value

eValue = f.e;

if f.eSignBit==1

eValue = -eValue;

end

x = mValue * 10^eValue;

To simulate three-digit floating point arithmetic, we convert the operands to conventional form, do the
arithmetic, and then represent the result in 3-digit form. The following function implements this approach:

function z = Float(x,y,op)

% z = Float(x,y,op)

% x and y are representations of a 3-digit floating point number.

% op is one of the strings ’+’, ’-’, ’*’, or ’/’.

% z is the 3-digit floating point representation of x op y.

sx = num2str(convert(x));

sy = num2str(convert(y));

z = represent(eval([’(’ sx ’)’ op ’(’ sy ’)’ ]));

Strings are enclosed in quotes. The conversion of a number to a string is handled by num2str. Strings are
concatenated by assembling them in square brackets. The eval function takes a string for input and returns
the value produced when that string is executed.

To “pretty print” the value of a floating point representation, we have

function s = Pretty(f)

% s = Pretty(f)

% f is a representation of a 3-digit floating point number.

% s is a string so that disp(s) "pretty prints" the value of f.

As an illustration of how these functions can be used, the script file Euler generates the partial sums

sn = 1 +
1

2
+ · · ·+ 1

n
.

In exact arithmetic the sn tend toward ∞, but when we run

% Script File: Euler

% Sums the series 1 + 1/2 + 1/3 + .. in 3-digit floating point arithmetic.

% Terminates when the addition of the next term does not change

% the value of the running sum.

oldsum = Represent(0);

one = Represent(1);

sum = one;

k = 1;

while Convert(sum) ~= Convert(oldsum)

k = k+1;

kay = Represent(k);

term = Float(one,kay,’/’);

oldsum = sum;

sum = Float(sum,term,’+’);

end

clc

disp([’The sum for ’ num2str(k) ’ or more terms is ’ pretty(sum)])
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the loop terminates after 200 terms.

1.6.2 Padé Approximants

A very useful class of approximants for the exponential function ez are the Padé functions defined by

Rpq(z) =

(
p∑

k=0

(p + q − k)!p!

(p + q)!k!(p− k)!
zk

)/(
q∑

k=0

(p + q − k)!q!

(p + q)!k!(q− k)!
(−z)k

)
.

Assuming the availability of

function R = PadeCoeff(p,q)

% R = PadeCoeff(p,q)

% p and q are nonnegative integers and R is a representation of the

% (p,q)-Pade approximation N(x)/D(x) to exp(x):

%

% R.num is a row (p+1)-vector whose entries are the coefficients of the

% p-degree numerator polynomial N(x).

%

% R.den is a row (q+1)-vector whose entries are the coefficients of the

% q-degree denominator polynomial D(x).

%

% Thus,

% R.num(1) + R.num(2)x + R.num(3)x^2

% ------------------------------------

% R.den(1) + R.den(2)x

%

% is the (2,1) Pade approximation.

the following function returns a cell array whose entries specify a particular Padé approximation:

function P = PadeArray(m,n)

% P = PadeArray(m,n)

% m and n are nonnegative integers.

% P is an (m+1)-by-(n+1) cell array.

%

% P{i,j} represents the (i-1,j-1) Pade approximation N(x)/D(x) to exp(x).

P = cell(m+1,n+1);

for i=1:m+1

for j=1:n+1

P{i,j} = PadeCoeff(i-1,j-1);

end

end

Problems

P1.6.1 Write a function s = dot3(x,y) that returns the 3-digit representation of the inner product x’*y where x and y are
column vectors of the same length. The inner product should be computed using 3-digit arithmetic. (Make effective use of
represent, convert, and float.) The error can be computed via the command err = x’*y - convert(dot3(x,y)). Write a
script that plots a histogram of the error when dot3 is applied to 100 random x’*y problems of length 5. Use randn(5,1) to
generate the x and y vectors. Report the results in a histogram with 20 bins.

P1.6.2 Use PadeArray to generate representations of the Padé approximants Rpq for 0 ≤ p ≤ 3 and 0 ≤ q ≤ 3. Plot the relative
error of R11, R22 and R33 across the interval [-5 5]. Use semilogy for the plots.

P1.6.3 The Chebychev polynomials are defined by

Tk(x) =

8

<

:

1 k = 0
x k = 1
2xTk−1(x) − Tk−2(x) k ≥ 2

.

Write a function T = ChebyCoeff(n) that returns an n-by-1 cell array whose ith cell is a length-i array. The elements of the
array are the coefficients of Ti−1. Thus T{3} = [-1 0 2] since T2(x) = 2x2 − 1.
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1.7 More Refined Graphics

Plots can be embellished so that they carry more information and have a more pleasing appearance. In this
section we show how to set font, incorporate subscripts and superscripts, and use mathematical and Greek
symbols in displayed strings. We also discuss the careful placement of text in a figure window and how to
modify what the axes “say”. Line thickness and color are also treated.

Because refined graphics is best learned through experimentation, our presentation is basically by exam-
ple. Formal syntactic definitions are avoided. The reader is encouraged to play with the scripts provided.

1.7.1 Fonts

A font has a name, a size, and a style. Figure 1.18 shows some of the possibilities associated with the
Times-Roman font. The script ShowFonts displays similar tableaus for the AvantGarde, Bookman, Courier,
Helvetica, Helvetica-Narrow, NewCenturySchlbk, Palatino, and Zapfchancery fonts. Here are some sample
text commands where non-default fonts are used:

text(x,y,’Matlab’,’FontName’,’Times-Roman’,’FontSize’,12)

text(x,y,’Matlab’,’FontName’,’Helvetica’,’FontSize’,12,’FontWeight’,’bold’)

text(x,y,’Matlab’,’FontName’,’ZapfChancery’,’FontSize’,12,’FontAngle’,’oblique’)

The fonts can also be set when using title, xlabel, and ylabel, e.g.,

title(’Important Title’,’FontName’,’Helvetica’,’FontSize’,18,’FontWeight’,’bold’)

1.7.2 Mathematical Typesetting

It is possible to specify subscripts, superscripts, Greek letters, and various mathematical symbols in the
strings that are passed to title, xlabel, ylabel, and text. For example,

title(’{\itf}_{1}({\itx}) = sin(2\pi{\itx}){\ite}^{-2{\it\alphax}}’)

creates a title of the form sin(2πx)e−2αx. conventions are followed. “Special characters” are specified with

Times−Roman

Plain Bold Oblique

Matlab Matlab Matlab

Matlab Matlab Matlab

Matlab Matlab Matlab

Matlab Matlab Matlab

Matlab Matlab Matlab

Matlab Matlab Matlab

Matlab Matlab Matlab

Figure 1.18 Fonts

a \ prefix and some of the possibilities are given in Figures 1.19 and 1.20. In this setting, curly brackets are
used to determine scope. The underscore and caret are used for subscripts and superscripts. It is customary
to italicize mathematical expressions, except that numbers and certain function names should remain in
plain font. To do this use \it.
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Math Symbols

←

→

↑

↓

⇐

⇒

⇔

∂

≠

≥

≈

≡

≅

±

∇

∠

∈

⊂

∪

∩

⊥

∞

∫

×

\leftarrow

\rightarrow

\uparrow

\downarrow

\Leftarrow

\Rightarrow

\Leftrightarrow

\partial

\neq

\geq

\approx

\equiv

\cong

\pm

\nabla

\angle

\in

\subset

\cup

\cap

\perp

\infty

\int

\times

Figure 1.19 Math symbols

Greek Symbols

α

β

γ

δ

ε

κ

λ

µ

ν

\alpha

\beta

\gamma

\delta

\epsilon

\kappa

\lambda

\mu

\nu

ω

φ

π

χ

ψ

ρ

σ

τ

υ

\omega

\phi

\pi

\chi

\psi

\rho

\sigma

\tau

\upsilon

Σ

Π

Λ

Ω

Γ

\Sigma

\Pi

\Lambda

\Omega

\Gamma

Figure 1.20 Greek symbols
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1.7.3 Text Placement

The accurate placement of labels in a figure window is simplified by using HorizontalAlignment and
VerticalAlignment with suitable modifiers. With its vertices encoded in a pair of length-6 arrays x and y,

← P
1

↓
  P

2

P
3
 →

P
4
 →

↑P
5
  

← P
6

Figure 1.21 Text placements

the labeled hexagon in Figure 1.21 is produced with the following fragment:

HA = ’HorizontalAlignment’; VA = ’VerticalAlignment’;

text(x(1),y(1),’\leftarrow {\itP}_{1}’, HA,’left’)

text(x(2),y(2),’\downarrow’, HA,’center’, VA,’baseline’)

text(x(2),y(2),’{ \itP}_{2}’, HA,’left’, VA,’bottom’)

text(x(3),y(3),’{\itP}_{3} \rightarrow’, HA,’right’)

text(x(4),y(4),’{\itP}_{4} \rightarrow’, HA,’right’)

text(x(5),y(5),’\uparrow’, HA,’center’, VA,’top’)

text(x(5),y(5),’{\itP}_{5} ’, HA,’right’, VA,’top’)

text(x(6),y(6),’\leftarrow {\itP}_{6}’, HA,’left’)

1.7.4 Line Width and Axes

It is possible to modify the thickness of the lines that are drawn by plot. The fragment

h = plot(x,y);

set(h,’LineWidth’,3)

plots y versus x with the line width attribute set to 3. The effect of various line width settings is shown in
Figure 1.22. It is also possible to regulate the font used by xlabel, ylabel, and title and to control the
“tick mark” placement along these axes. See Figure 1.23 which is produced by the following script:

F = ’Times-Roman’; n = 12; t = linspace(0,2*pi); c = cos(t); s = sin(t);

plot(c,s), axis([-1.3 1.3,-1.3 1.3]), axis equal

title(’The Circle ({\itx-a})^{2} + ({\ity-b})^{2} = {\itr}^{2}’,...

’FontName’,F,’FontSize’,n)

xlabel(’x’,’FontName’,F,’FontSize’,n)

ylabel(’y’,’FontName’,F,’FontSize’,n)

set(gca,’XTick’,[-.5 0 .5])

set(gca,’YTick’,[-.5 0 .5])

grid on
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LineWidth

default

  1

  2

  3

  4

  5

  6

  7

  8

  9

 10

Figure 1.22 Line width

−0.5 0 0.5

−0.5

0

0.5

The Circle (x−a)
2
 + (y−b)

2
 = r

2

x

y

Figure 1.23 Axis design

We mention that grid is a toggle and when it is on, the grid lines associated with the prescribed axis ticks
are displayed. All tick marks can be suppressed by using the empty matrix, e.g., set(gca,’XTick’,[]).

1.7.5 Legends

It is sometimes useful to have a legend in plots that display more than one function. Figure 1.24 is produced
by the following script:

t = linspace(0,2);

axis([0 2 -1.5 1.5])

y1 = sin(t*pi); y2 = cos(t*pi);

plot(t,y1,t,y2,[0 .5 1 1.5 2],[0 0 0 0 0],’o’)

set(gca,’XTick’,[]), set(gca,’YTick’,[0]), grid on

legend(’sin(\pi t)’,’cos(\pi t)’,’roots’,0)

The integer provided to legend is used to specify position: 0 = least conflict with data, 1 = upper right-hand
corner (default), 2 = upper left-hand corner, 3 = lower left-hand corner, 4 = lower right-hand corner, and
-1 = to the right of the plot.
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0

sin(π t)
cos(π t)
roots

Figure 1.24 Legend placement

1.7.6 Color

Matlab comes with 8 predefined colors:

rgb [0 0 0] [0 0 1] [0 1 0] [0 1 1] [1 0 0] [1 0 1] [1 1 0] [1 1 1]
color white blue green cyan red magenta yellow black

mnemonic w b g c r m y k

The “rgb triple” is a 3-vector whose components specify the amount of red, green and blue. The rgb values
must be in between 0 and 1. (See Figure 1.25.) To specify that a particular line be drawn with a predefined
color, just include its mnemonic in the relevant line type string. Here are some examples:

plot(x,y,’g’)

plot(x,y,’*g’)

plot(x1,y1,’r’,x2,y2,’.g’,x3,y3,’k.-’)

The fill function can be used to draw filled polygons with a specified color. If x and y are length-n
vectors then

fill(x,y,’m’)

draws a magenta polygon whose vertices are (xi, yi), i = 1:n. “User-defined” colors can also be passed to
fill,

fill(x,y,[.3,.8,.4])

It is also possible draw several filled polygons at once:

fill(x1,y1,’g’,x2,y2,[.3,.8,.4])
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Built−In Colors A Gradient

cyan

magenta

yellow

red

green

blue

black

white

[ 0.40 , 1 , 1 ]

[ 0.60 , 1 , 1 ]

[ 0.70 , 1 , 1 ]

[ 0.80 , 1 , 1 ]

[ 0.85 , 1 , 1 ]

[ 0.90 , 1 , 1 ]

[ 0.95 , 1 , 1 ]

[ 1.00 , 1 , 1 ]

Figure 1.25 Color

See the script ShowColor for more details.

Problems

P1.7.1 Complete the following Matlab function so that it performs as specified:

function arch(a,b,theta1,theta2,r1,r2,ring_color)

%

% Adds an arch with center (a,b), inner radius r1, and outer radius r2 to the current figure.

% The arch is the set of all points of the form (a+r*cos(theta),b+r*sin(theta)) where

% r1 <= r <= r2 and theta1 <= theta <= theta2 where theta1 and theta2 in radians.

% The color of the displayed arch is prescribed by ring_color, a 3-vector encoding the rgb triple.

Write a function OlympicRings(r,n,ring colors) with the property that the script

close all

ring_colors = [0 0 1 ; 1 1 0 ; 1 1 1 ; 0 1 0 ; 1 0 0];

OlympicRings(1,5,ring_colors)

axis off equal

produces the following output (in black and white):

In a call to OlympicRings, r is the outer radius of each ring and n is the number of rings. Index the rings left to right from 0 to
n − 1. The parameter ring colors is an n-by-3 matrix whose k + 1st row specifies the color of the kth ring. The inner radius
of each ring is .85r. The center (ak, bk) of the kth ring is given by (1.15rk,0) if k is even and by (1.15rk,−r) if k is odd.

Notice that the rings are interlocking. Thus, to get the right “over-and-under” appearance you cannot simply superimpose
the drawing of the 5 rings. You’ll have to split up the drawing of each ring into sections and the small little cross lines you see
in the above figure are a hint.
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M-Files and References

Script Files

SineTable Prints a short table of sine evaluations.
SinePlot Displays a sequence of sin(x) plots.
ExpPlot Plots exp(x) and an approximation to exp(x).
TangentPlot Plots tan(x).
SineAndCosPlot Superimposes plots of sin(x) and cos(x).
Polygons Displays nine regular polygons, one per window.
SumOfSines Displays the sum of four sine functions.
SumOfSines2 Displays a pair of sum-of-sine functions.
UpDown Sample core exploratory environment.
RunUpDown Framework for running UpDown.
Histograms Displays the distribution of rand and randn.
Clouds Displays 2-dimensional rand and randn.
Dice Histogram of 1000 dice rolls.
Darts Monte Carlo computation of pi.
Smooth Polygon smoothing.
Stirling Relative and absolute error in Stirling formula.
ExpTaylor Plots relative error in Taylor approximation to exp(x).
Zoom Roundoff in the expansion of (x-1)b6.
FpFacts Examines precision, overflow, and underflow.
TestMyExp Examines MyExp1, MyExp2, MyExp3, and MyExp4.
Euler Three-digit arithmetic sum of 1 + 1/2 +...+ 1/n.
ShowPadeArray Tests the function PadeArray.
ShowFonts Illustrates how to use fonts.
ShowSymbols Shows how to generate math symbols.
ShowGreek Shows how to generate Greek letters.
ShowText Shows how to align with text.
ShowLineWidth Shows how vary line width in a plot.
ShowAxes Shows how to set tick marks on axes.
ShowLegend Shows how to add a legend to a plot.
ShowColor Shows how to use built-in colors and user-defined colors.

Function Files

MyExpF For-loop Taylor approximation to exp(x).
MyExp1 Vectorized version of MyExpF.
MyExp2 Better vectorized version of MyExpF.
MyExpW While-loop Taylor approximation to exp(x).
MyExp3 Vectorized version of MyExpW.
MyExp4 Better vectorized version of MyExpW.
Derivative Numerical differentiation.
Represent Sets up 3-digit arithmetic representation.
Convert Converts 3-digit representation to float.
Float Simulates 3-digit arithmetic.
Pretty Pretty prints a 3-digit representation.
PadeArray Builds a cell array of Pade coefficients.



Chapter 2

Polynomial Interpolation

§2.1 The Vandermonde Approach

§2.2 The Newton Approach

§2.3 Properties

§2.4 Special Topics

In the problem of data approximation, we are given some points (x1, y1), . . . , (xn, yn) and are asked to find
a function φ(x) that “captures the trend” of the data. If the trend is one of decay, then we may seek a φ of
the form a1e

−λ1x + a2e
−λ2x. If the trend of the data is oscillatory, then a trigonometric approximant might

be appropriate. Other settings may require a low-degree polynomial. Regardless of the type of function
used, there are many different metrics for success, e.g., least squares.

A special form of the approximation problem ensues if we insist that φ actually “goes through” the data,
as shown in Figure 2.1. This means that φ(xi) = yi, i = 1:n and we say that φ interpolates the data. The
polynomial interpolation problem is particularly important:

Given x1, . . . , xn (distinct) and y1, . . . , yn, find a polynomial pn−1(x) of
degree n− 1 (or less) such that pn−1(xi) = yi for i = 1:n.

Thus, p2(x) = 1 + 4x− 2x2 interpolates the points (−2,−15), (3,−5), and (1, 3).
Each (xi, yi) pair can be regarded as a snapshot of some function f(x): yi = f(xi). The function f may

be explicitly available, as when we want to interpolate sin(x) at x = 0, π/2, and π with a quadratic. On
other occasions, f is implicitly defined, as when we want to interpolate the solution to a differential equation
at a discrete number of points.

The discussion of polynomial interpolation revolves around how it can be represented, computed, and
evaluated:

• How do we represent the interpolant pn−1(x)? Instead of expressing the interpolant in terms of the
“usual” basis polynomials 1, x, and x2, we could use the alternative basis 1, (x+2), and (x+2)(x−3).
Thus,

p2(x) = −15 + 2(x + 2)− 2(x + 2)(x− 3)

is another way to express the quadratic interpolant of the data (−2,−15), (3,−5), and (1, 3). Different
bases have different computational virtues.

• Once we have settled on a representation for the polynomial interpolant, how do we determine the
associated coefficients? It turns out that this aspect of the problem involves the solution of a linear
system of equations with a highly structured coefficient matrix.

1
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Figure 2.1 The interpolation of four data points with a cubic polynomial

• After we have computed the coefficients, how can the interpolant be evaluated with efficiency? For
example, if the interpolant is to be plotted then we are led to the problem of evaluating a polynomial
on a vector of values.

In Matlab these issues can be handled by polyfit and polyval. The script

x = [-2 3 1];

y = [-15 -5 3];

a = polyfit(x,y,2)

xvals = linspace(-3,2,100);

pvals = polyval(a,xvals);

plot(xvals,pvals)

plots the polynomial interpolant of the data (−2,−15), (3,−5), and (1, 3). The interpolant is given by
p(x) = 1 + 4x− 2x2 and the call to polyfit computes a representation of this polynomial. In particular, a
is assigned the vector [-2 4 1].

In general, if x and y are n-vectors, then a = polyfit(x,y,n-1) assigns a length-n vector to a with the
property that the polynomial

p(x) = an + an−1x + an−2x
2 + · · ·+ a1x

n−1

interpolates the data (x1, y1), . . . , (xn, yn).

The function polyval is used to evaluate polynomials in the Matlab representation. In the above script
polyval(a,xvals) is a vector of interpolant evaluations.

In this chapter we start with what we call the “Vandermonde” approach to the polynomial interpolation
problem. The Newton representation is considered in §2.2 and accuracy issues in §2.3. Divided differences,
inverse interpolation, interpolation in the plane, and trigonmetric interpolation are briefly discussed in §2.4.

2.1 The Vandermonde Approach

In the Vandermonde approach, the interpolant is expressed as a linear combination of 1, x, x2, etc. Al-
though monomials are not the best choice for a basis, our familiarity with this way of “doing business” with
polynomials makes them a good choice to initiate the discussion.
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2.1.1 A Four-point Interpolation Problem

Let us find a cubic polynomial

p3(x) = a1 + a2x + a3x
2 + a4x

3

that interpolates the four data points (−2, 10), (−1, 4), (1, 6), and (2, 3). Note that this is the “reverse” of
Matlab ’s convention for representing polynomials. 1 Each point of interpolation leads to a linear equation
that relates the four unknowns a1, a2, a3, and a4:

p3(−2) = 10 ⇒ a1 − 2a2 + 4a3 − 8a4 = 10
p3(−1) = 4 ⇒ a1 − a2 + a3 − a4 = 4
p3(1) = 6 ⇒ a1 + a2 + a3 + a4 = 6
p3(2) = 3 ⇒ a1 + 2a2 + 4a3 + 8a4 = 3

Expressing these four equations in matrix/vector terms gives





1 −2 4 −8
1 −1 1 −1
1 1 1 1
1 2 4 8









a1

a2

a3

a4



 =





10
4
6
3



 .

The solution a = [4.5000 1.9167 0.5000 − 0.9167]T to this 4-by-4 system can be found as follows:

y = [10; 4; 6; 3];

V = [1 -2 4 -8; 1 -1 1 -1; 1 1 1 1; 1 2 4 8];

a = V\y;

2.1.2 The General n Case

From this example, it looks like the polynomial interpolation problem reduces to a linear equation problem.
For general n, the goal is to determine a1, . . . , an so that if

pn−1(x) = a1 + a2x + a3x
2 + · · ·+ anxn−1,

then

pn−1(xi) = a1 + a2xi + a3x
2
i + · · ·+ anxn−1

i = yi

for i = 1:n. By writing these equations in matrix-vector form, we obtain





1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2

1 x3 x2
3 · · · xn−1

3
...

...
...

. . .
...

1 xn x2
n · · · xn−1

n









a1

a2

a3

...

an





=





y1

y2

y3

...

yn





.

Designate the matrix of coefficients by V . The solvability of the interpolation problem hinges on the non-
singularity of V . Suppose there is a vector c such that V c = 0. It follows that the polynomial

q(x) = c1 + c2x + · · ·+ cnxn−1

is zero at x = x1, . . . , x = xn. This says that we have a degree n − 1 polynomial with n roots. The only
way that this can happen is if q is the zero polynomial (i.e., c = 0). Thus V is nonsingular because the only
vector that it zeros is the zero vector.

1Matlab would represent the sought-after cubic as p3 = a4 + a3x + a2x2 + a1x3. Our chosen style is closer to what one
would find in a typical math book: p3(x) = a0 + a1x + a2x2 + a3x3.
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2.1.3 Setting Up and Solving the System

Let us examine the construction of the Vandermonde matrix V . Our first method is based on the observation
that the ith row of V involves powers of xi and that the powers increase from 0 to n−1 as the row is traversed
from left to right. A conventional double-loop approach gives

n = length(x); V = zeros(n,n);

for i=1:n

% Set up row i.

for j=1:n

V(i,j) = x(i)̂(j-1);
end

end

Algorithms that operate on a two-dimensional array in row-by-row fashion are row oriented.
The inner-loop in the preceding script can be vectorized because Matlab supports pointwise exponenti-

ation. For example, u = [1 2 3 4] .̂[3 5 2 3] assigns to u the row vector [1 32 9 64]. The i-th row of
V requires exponentiating the scalar xi to each of the values in the row vector 0:n− 1 = (0, 1, . . . , n− 1).
Thus, row = (x(i)*ones(1,n)).̂(0:n-1) assigns the vector (1, xi, x

2
i , . . . , x

n−1
i ) to row, precisely the val-

ues that make up the ith row of V . The ith row of a matrix V may be referenced by V(i,:), and so we
obtain

n = length(x); V = zeros(n,n);

for i=1:n

% Set up the i-th row of V.

V(i,:) = (x(i)*ones(1,n)).̂(0:n-1);
end

By reversing the order of the loops in the original set-up script, we obtain a column oriented algorithm:

n = length(x); V = zeros(n,n);

for j=1:n

% Set up column j.

for i=1:n

V(i,j) = x(i)̂(j-1);
end

end

If j > 1, then V (i, j) is the product of x(i) and V (i, j − 1), the matrix entry to its left. This suggests that
the required exponentiations can be obtained through repeated multiplication:

n = length(x);

V = ones(n,n);

for j=2:n

% Set up column j.

for i=1:n

V(i,j) = x(i)*V(i,j-1)

end

end

The generation of the jth column involves pointwise vector multiplication:




x1

...
xn



 . ∗




v1,j−1

...
vn,j−1



 =




v1,j

...
vn,j



 .

This may be implemented by V(:,j) = x .* V(:,j-1). Basing our final implementation on this, we obtain
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function a = InterpV(x,y)

% a = InterpV(x,y)

% This computes the Vandermonde polynomial interpolant where

% x is a column n-vector with distinct components and y is a

% column n-vector.

%

% a is a column n-vector with the property that if

%

% p(x) = a(1) + a(2)x + ... a(n)x^(n-1)

% then

% p(x(i)) = y(i), i=1:n

n = length(x);

V = ones(n,n);

for j=2:n

% Set up column j.

V(:,j) = x.*V(:,j-1);

end

a = V\y;

Column-oriented, matrix-vector implementations will generally be favored in this text. One reason for doing
this is simply to harmonize with the traditions of linear algebra, which is usually taught with a column-
oriented perspective.

2.1.4 Nested Multiplication

We now consider the evaluation of pn−1(x) = a1 + · · ·+ anxn−1 at x = z, assuming that z and a(1:n) are
available. The routine approach

n = length(a);

zpower = 1;

pVal = a(1);

for i=2:n

zpower = z*zpower;

pVal = pVal + a(i)*zpower;

end

assigns the value of pn−1(z) to pVal.
A more efficient algorithm is based on a nested organization of the polynomial, which we illustrate for

the case n = 4:

p3(x) = a1 + a2x + a3x
2 + a4x

3 = ((a4x + a3)x + a2)x + a1.

Note that the fragment

pVal = a(4);

pVal = z*pVal + a(3);

pVal = z*pVal + a(2);

pVal = z*pVal + a(1);

assigns the value of p3(z) to pVal. For general n, this nested multiplication idea takes on the following form:

n = length(a);

pVal = a(n);

for i=n-1:-1:1

pVal = z*pVal + a(i);

end
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This is widely known as Horner’s rule.
Before we encapsulate the Horner idea in a Matlab function, let us examine the case when the interpolant

is to be evaluated at many different points. To be precise, suppose z(1:m) is initialized and that for i = 1:m,
we want to assign the value of pn−1(z(i)) to pVal(i). One obvious approach is merely to repeat the preceding
Horner iteration at each point. Instead, we develop a vectorized implementation that can be obtained if
we think about the “simultaneous” evaluation of the interpolants at each zi. Suppose m = 5 and n = 4
(i.e, the case when a cubic interpolant is to be evaluated at five different points). The first step in the five
applications of the Horner idea may be summarized as follows:





pVal(1)

pVal(2)

pVal(3)

pVal(4)

pVal(5)




=





a(4)

a(4)

a(4)

a(4)

a(4)




.

In vector terms pVal = a(n)*ones(m,1). The next step requires a multiply-add of the following form:





pVal(1)

pVal(2)

pVal(3)

pVal(4)

pVal(5)




=





z(1)*pVal(1)

z(2)*pVal(2)

z(3)*pVal(3)

z(4)*pVal(4)

z(5)*pVal(5)




+





a(3)

a(3)

a(3)

a(3)

a(3)




.

That is,

pVal = z.*pVal + a(3)

The pattern is clear for the cubic case:

pVal = a(4)*ones(m,1);

pVal = z .* pVal + a(3);

pVal = z .* pVal + a(2);

pVal = z .* pVal + a(1);

From this we generalize to the following:

function pVal = HornerV(a,z)

% pVal = HornerV(a,z)

% evaluates the Vandermonde interpolant on z where

% a is an n-vector and z is an m-vector.

%

% pVal is a vector the same size as z with the property that if

%

% p(x) = a(1) + .. +a(n)x^(n-1)

% then

% pVal(i) = p(z(i)) , i=1:m.

n = length(a);

m = length(z);

pVal = a(n)*ones(size(z));

for k=n-1:-1:1

pVal = z.*pVal + a(k);

end

Each update of pval requires 2m flops so approximately 2mn flops are required in total.
As an application, here is a script that displays cubic interpolants of sin(x) on [0, 2π]. The abscissas are

chosen randomly.
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% Script File: ShowV

% Plots 4 random cubic interpolants of sin(x) on [0,2pi].

% Uses the Vandermonde method.

close all

x0 = linspace(0,2*pi,100)’;

y0 = sin(x0);

for eg=1:4

x = 2*pi*sort(rand(4,1));

y = sin(x);

a = InterpV(x,y);

pVal = HornerV(a,x0);

subplot(2,2,eg)

plot(x0,y0,x0,pVal,’--’,x,y,’*’)

axis([0 2*pi -2 2])

end

Figure 2.2 displays a sample output.
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−1
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Figure 2.2 Random cubic interpolants of sin(x) on [0, 2π]

Problems

P2.1.1 Instead of expressing the polynomial interpolant in terms of the basis functions 1, x, . . . , xn−1, we can work with the
alternative representation

pn−1(x) =

n
X

k=1

ak

„

x − u

v

«k−1

.

Here u and v are scalars that serve to shift and scale the x-range. Generalize InterpV so that it can be called with either two,
three, or four arguments. A call of the form a = InterpV(x,y) should assume that u = 0 and v = 1. A call of the form a =

InterpV(x,y,u) should assume that v = 1 and that u houses the shift factor. A call of the form a = InterpV(x,y,u,v) should
assume that u and v house the shift and scale factors, respectively.

P2.1.2 A polynomial of the form
p(x) = a1 + a2x2 + · · · + amx2m−2

is said to be even, while a polynomial of the form

p(x) = a1x + a3x3 + · · · + amx2m−1

is said to be odd. Generalize HornerV(a,z) so that it has an optional third argument type that indicates whether or not the
underlying polynomial is even or odd. In particular, a call of the form HornerV(a,z,’even’) should assume that ak is the
coefficient of x2k−2. A call of the form HornerV(a,z,’odd’) should assume that ak is the coefficient of x2k−1.
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P2.1.3 Assume that z and a(1:n) are initialized and define

p(x) = a1 + a2x + · · · + anxn−1.

Write a script that evaluates (1) p(z)/p(−z), (2) p(z) + p(−z), (3) p′(z), (4)
R 1
0 p(x)dx, and (e)

R z
−z p(x)dx. Make effective use

of HornerV.

P2.1.4 (a) Assume that L (scalar), R (scalar), and c(1:4) are given. Write a script that computes a(1:4) so that if p(x) =
a1 + a2x + a3x2 + a4x3, then p(L) = c1, p′(L) = c2, p′′(L) = c3, and p(R) = c4. Use \ to solve any linear system
that arises in your method. (b) Write a function a = TwoPtInterp(L,cL,R,cR) that returns the coefficients of a polynomial
p(x) = a1 +a2x+ · · ·+anxn that satisfies p(k−1)(L) = cL(k) for k = 1:length(cL) and p(k−1)(R) = cR(k) for k = 1:length(cR).
The degree of p should be one less than the total number of end conditions. (The problem of determining a cubic polynomial
whose value and slope are prescribed at two points is discussed in detail in §3.2.1. It is referred to as the cubic Hermite

interpolation problem.)

P2.1.5 Write a function PlotDerPoly(x,y) that plots the derivative of the polynomial interpolant of the data (xi, yi), i = 1:n.
Assume that x1 < · · · < xn and the plot should be across the interval [x1, xn]. Use polyfit and polyval.

2.2 The Newton Representation

We now look at a form of the polynomial interpolant that is generally more useful than the Vandermonde
representation.

2.2.1 A Four-Point Example

To motivate the idea, consider once again the problem of interpolating the four points (x1, y1), (x2, y2),
(x3, y3), and (x4, y4) with a cubic polynomial p3(x). However, instead of expressing the interpolant in terms of
the “canonical” basis 1, x, x2, and x3, we use the basis 1, (x−x1), (x−x1)(x−x2), and (x−x1)(x−x2)(x−x3).
This means that we are looking for coefficients c1, c2, c3, and c4 so that if

p3(x) = c1 + c2(x− x1) + c3(x − x1)(x − x2) + c4(x− x1)(x− x2)(x− x3), (2.1)

then yi = p3(xi) = yi for i = 1:4. In expanded form, these four equations state that

y1 = c1

y2 = c1 + c2(x2 − x1)

y3 = c1 + c2(x3 − x1) + c3(x3 − x1)(x3 − x2)

y4 = c1 + c2(x4 − x1) + c3(x4 − x1)(x4 − x2) + c4(x4 − x1)(x4 − x2)(x4 − x3).

By rearranging these equations, we obtain the following four-step solution process:

c1 = y1

c2 =
y2 − c1

x2 − x1

c3 =
y3 − (c1 + c2(x3 − x1))

(x3 − x1)(x3 − x2)

c4 =
y4 − (c1 + c2(x4 − x1) + c3(x4 − x1)(x4 − x2))

(x4 − x1)(x4 − x2)(x4 − x3)
.

This sequential solution process is made possible by the clever choice of the basis polynomials and the result
is the Newton representation of the interpolating polynomial.
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To set the stage for the general-n algorithm, we redo the n = 4 case using matrix-vector notation
to discover a number of simplifications. The starting point is the system of equations that we obtained
previously which can be expressed in the following form:





1 0 0 0
1 (x2 − x1) 0 0
1 (x3 − x1) (x3 − x1)(x3 − x2) 0
1 (x4 − x1) (x4 − x1)(x4 − x2) (x4 − x1)(x4 − x2)(x4 − x3)









c1

c2

c3

c4



 =





y1

y2

y3

y4



 .

From this we see immediately that c1 = y1. We can eliminate c1 from equations 2, 3, and 4 by subtracting
equation 1 from equations 2, 3, and 4:





1 0 0 0
0 (x2 − x1) 0 0
0 (x3 − x1) (x3 − x1)(x3 − x2) 0
0 (x4 − x1) (x4 − x1)(x4 − x2) (x4 − x1)(x4 − x2)(x4 − x3)









c1

c2

c3

c4



 =





y1

y2 − y1

y3 − y1

y4 − y1



 .

If we divide equations 2, 3, and 4 by (x2 − x1), (x3 − x1), and (x4 − x1), respectively, then the system
transforms to





1 0 0 0
0 1 0 0
0 1 (x3 − x2) 0
0 1 (x4 − x2) (x4 − x2)(x4 − x3)









c1

c2

c3

c4



 =





y1

y21

y31

y41



 ,

where y21, y31, and y41 are defined by

y21 =
y2 − y1

x2 − x1
y31 =

y3 − y1

x3 − x1
y41 =

y4 − y1

x4 − x1
.

Notice that



y21

y31

y41



 =








y2

y3

y4



−




y1

y1

y1







 ./








x2

x3

x4



−




x1

x1

x1







 = (y(2:4)− y(1))./(x(2:4)− x(1)).

The key point is that we have reduced the size of problem by one. The remaining unknowns satisfy a 3-by-3
system:




1 0 0
1 (x3 − x2) 0
1 (x4 − x2) (x4 − x2)(x4 − x3)








c2

c3

c4



 =




y21

y31

y41



 .

This is exactly the system obtained were we to seek the coefficients of the quadratic

q(x) = c2 + c3(x− x2) + c4(x− x2)(x− x3)

that interpolates the data (x2, y21), (x3, y31), and (x4, y41).

2.2.2 The General n Case

For general n, we see that if c1 = y1 and

q(x) = c2 + c3(x − x2) + · · ·+ cn(x− x2) · · · (x− xn−1)



10 CHAPTER 2. POLYNOMIAL INTERPOLATION

interpolates the data (
xi,

yi − y1

xi − x1

)
i = 2:n,

then

p(x) = c1 + (x− x1)q(x)

interpolates (x1, y1), . . . , (xn, yn). This is easy to verify. Indeed, for j = 1:n

p(xj) = c1 + (xj − x1)q(xj) = y1 + (xj − x1)
yj − y1

xj − x1
= yj.

This sets the stage for a recursive formulation of the whole process:

function c = InterpNRecur(x,y)

% c = InterpNRecur(x,y)

% The Newton polynomial interpolant.

% x is a column n-vector with distinct components and y is

% a column n-vector. c is a column n-vector with the property that if

%

% p(x) = c(1) + c(2)(x-x(1))+...+ c(n)(x-x(1))...(x-x(n-1))

% then

% p(x(i)) = y(i), i=1:n.

n = length(x); c = zeros(n,1); c(1) = y(1);

if n > 1

c(2:n) = InterpNRecur(x(2:n),(y(2:n)-y(1))./(x(2:n)-x(1)));

end

If n = 1, then the constant interpolant p(x) ≡ y1 is returned (i.e., c1 = y1.) Otherwise, the final c-vector is
a “stacking” of y1 and the solution to the reduced problem. The recursive call obtains the coefficients of the
interpolant q(x) mentioned earlier.

To develop a nonrecursive implementation, we return to our four-point example and the equation





1 0 0 0
0 1 0 0
0 1 (x3 − x2) 0
0 1 (x4 − x2) (x4 − x2)(x4 − x3)









c1

c2

c3

c4



 =





y1

y21

y31

y41



 .

From this we see that c2 = y21. Now subtract equation 2 from equation 3 and divide by (x3 − x2). Next,
subtract equation 2 from equation 4 and divide by (x4 − x2). With these operations we obtain





1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 (x4 − x3)









c1

c2

c3

c4



 =





y1

y21

y321

y421



 ,

where

y321 =
y31 − y21

x3 − x2
y421 =

y41 − y21

x4 − x2
.

At this point we see that c3 = y321. Finally, by subtracting the third equation from the fourth equation and
dividing by (x4 − x3), we obtain





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









c1

c2

c3

c4



 =





y1

y21

y321

y4321



 ,
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where

y4321 =
y421 − y321

x4 − x3
.

Clearly, c4 = y4321. The pattern for the general n case should be apparent:

for k=1:n-1

ck = yk

for j = k + 1:n
Subtract equation k from equation j and divide the result by (xj − xk).

end

end

cn = yn

However, when updating the equations we need only keep track of the changes in the y-vector. For example,

y(k + 1:n) ←








yk+1

...
yn



−




yk

...
yk







 ./








xk+1

...
xn



−




xk

...
xk









= (y(k + 1:n)− y(k)) ./ (x(k + 1)− x(k)).

This leads to

function c = InterpN(x,y)

% c = InterpN(x,y)

% The Newton polynomial interpolant.

% x is a column n-vector with distinct components and y is

% a column n-vector. c is a column n-vector with the property that if

%

% p(x) = c(1) + c(2)(x-x(1))+...+ c(n)(x-x(1))...(x-x(n-1))

% then

% p(x(i)) = y(i), i=1:n.

n = length(x);

for k = 1:n-1

y(k+1:n) = (y(k+1:n)-y(k)) ./ (x(k+1:n) - x(k));

end

c = y;

2.2.3 Nested Multiplication

As with the Vandermonde representation, the Newton representation permits an efficient nested multiplica-
tion scheme. For example, to evaluate p3(x) at x = z, we have the nesting

p3(x) = ((c4(x− x3) + c3)(x− x2) + c2)(x − x1) + c1.

The fragment

pVal = c(4);

pVal = (z-x(3))*pVal + c(3);

pVal = (z-x(2))*pVal + c(2);

pVal = (z-x(1))*pVal + c(1);

assigns the value of p3(z) to pVal. If z is a vector, then this becomes

pVal = c(4)*ones(size(z));

pVal = (z-x(3)).*pVal + c(3);

pVal = (z-x(2)).*pVal + c(2);

pVal = (z-x(1)).*pVal + c(1);
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In general, we have

function pVal = HornerN(c,x,z)

% pVal = HornerN(c,x,z)

% Evaluates the Newton interpolant on z where c and x are n-vectors, z is an

% m-vector, and pVal is a vector the same size as z with the property that if

%

% p(x) = c(1) + c(2)(x-x(1))+ ... + c(n)(x-x(1))...(x-x(n-1))

% then

% pVal(i) = p(z(i)) , i=1:m.

n = length(c);

pVal = c(n)*ones(size(z));

for k=n-1:-1:1

pVal = (z-x(k)).*pVal + c(k);

end

The script ShowN illustrates HornerN and InterpN.

Problems

P2.2.1 Write a Matlab function a = N2V(c,x), where c is a column n-vector, x is a column (n − 1)-vector and a is a column
n-vector, so that if

p(x) = c1 + c2(x − x1) + · · · + cn(x − x1)(x − x2) · · · (x − xn−1),

then
p(x) = a1 + a2x + · · · + anxn−1.

In other words, N2V converts from the Newton representation to the Vandermonde representation.

P2.2.2 Suppose we are given the data (xi, yi), i = 1:n. Assume that the xi are distinct and that n ≥ 2. Let pL(x) and pR(x)
be degree n − 2 polynomials that satisfy

pL(xi) = yi i = 1:n − 1

pR(xi) = yi i = 2:n.

Note that if

p(x) =
(x − xn)pL(x) − (x − x1)pR(x)

x1 − xn
,

then p(xi) = yi, i = 1:n. In other words, p(x) is the unique degree n − 1 interpolant of (xi, yi), i = 1:n. Using this result,
complete the following function:

function pVal = RecurEval(x,y,z);

%

% x is column n-vector with distinct entries, y is a column n-vector, and z is

% a column m-vector.

%

% pVal is a column m-vector with the property that pVal(i) = p(z(i))

% where p(x) is the degree n-1 polynomial interpolant of (x(i),y(i)), i=1:n.

The implementation should be recursive and vectorized. No loops are necessary! Use RecurEval to produce an interpolant of
sin(2πx) at x = 0:.25:1.

P2.2.3 Write a Matlab script that solicits the name of a built-in function (as a string), the left and right limits of an interval
[L,R], and a positive integer n and then displays both the function and the n − 1 degree interpolant of it at linspace(L,R,n).

P2.2.4 Assume that n, z(1:n), L, R, and a(1:6) are available. Write an efficient Matlab script that assigns to q(i) the value
of the polynomial

q(x) = a1 + a2(x − L) + a3(x − L)2 + a4(x − L)3 + a5(x − L)3(x − R) + a6(x − L)3(x − R)2

at x = zi, i = 1:n. It doesn’t matter whether q(1:n) is a row vector or a column vector.

P2.2.5 Write a Matlab script that plots a closed curve

(px(t), py(t)) 0 ≤ t ≤ 1

that passes through the points (0,0), (0,3), (4,0). The functions px and py should be cubic polynomials. Make effective use of
InterpN and HornerN. The plot should be based on one hundred evaluations of px and py .
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2.3 Properties

With two approaches to the polynomial interpolation problem, we have an occasion to assess their relative
merits. Speed and accuracy are the main concerns.

2.3.1 Efficiency

One way to talk about the efficiency of a numerical method such as InterpV or InterpN is to relate the
number of required flops to the “length” of the input. For InterpV, the amount of required arithmetic grows
as the cube of n, the number of interpolation points. We say that InterpV is an O(n3) method meaning that
work goes up by a factor of 8 if n is doubled. (An n-by-n linear equation solve requires about 2n3/3 flops.)
On the other hand, InterpN is an O(n2) method. If we double n then work increases by an approximate
factor of 4.

Generally speaking quadratic methods (like InterpN) are to be preferred to cubic methods (like InterpV)
especially for large values of n. However, the “big-oh” predictions are typically not realized in practice for
small values of n. Moreover, counting flops does not take into account overheads associated with function
calls and memory access. Benchmarking these two methods using tic and toc would reveal that they are
not terribly different for modest n.

So far we have just discussed execution efficiency. Memory efficiency is also important. InterpV requires
an n-by-n array, while InterpN needs just a few n-vectors. In this case we say that InterpV is quadratic in
memory while InterpN is linear in memory.

2.3.2 Accuracy

We know that the polynomial interpolant exists and is unique, but how well does it approximate? The
answer to the question depends on the derivatives of the function that is being interpolated.

Theorem 2 Suppose pn−1(x) interpolates the function f(x) at the distinct points x1, . . . , xn. If f is n times
continuously differentiable on an interval I containing the xi, then for any x ∈ I

f(x) = pn−1(x) +
f(n)(η)

n!
(x− x1) · · · (x− xn)

where a ≤ η ≤ b.

Proof For clarity and with not a tremendous loss of generality, we prove the theorem for the n = 4 case.
Consider the function

F (t) = f(t) − p3(t) − cL(t),

where

c =
f(x) − p3(x)

(x − x1)(x − x2)(x− x3)(x− x4)

and L(t) = (t − x1)(t − x2)(t − x3)(t − x4). Note that F (x) = 0 and F (xi) = 0 for i = 1:4. Thus, F has at
least five zeros in I. In between these zeros F ′ has a zero and so F ′ has at least four zeros in I. Continuing
in this way, we conclude that

F (4)(t) = f(4)(t)− p
(4)
3 (t) − cL(4)(t)

has at least one zero in I which we designate by ηx. Since p3 has degree ≤ 3, p
(4)
3 (t) ≡ 0. Since L is a monic

polynomial with degree 4, L
(4)
3 (t) = 4!. Thus,

0 = F (4)(ηx) = f(4)(ηx)− p
(4)
3 (ηx)− cL(4)(ηx) = f(4)(ηx)− c · 4!. �

This result shows that the quality of pn−1(x) depends on the size of the nth derivative. If we have a bound
on this derivative, then we can compute a bound on the error. To illustrate this point in a practical way,
suppose |f(n)(x)| ≤Mn for all x ∈ [a, b]. It follows that for any z ∈ [a, b] we have

|f(z) − pn−1(z)| ≤ Mn

n!
max

a≤x≤b
|(x− x1)(x− x2) · · · (x− xn)|.
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If we base the interpolant on the equally spaced points

xi = a +

(
b− a

n− 1

)
(i− 1), i = 1:n

then, by a simple change of variable,

|f(z) − pn−1(z)| ≤Mn

(
b− a

n− 1

)n

max
0≤s≤n−1

∣∣∣∣
s(s− 1) · · · (s− n + 1)

n!

∣∣∣∣ .

It can be shown that the max is no bigger than 1/(4n), from which we conclude that

|f(z) − pn−1(z)| ≤ Mn

4n

(
b − a

n− 1

)n

. (2.2)

Thus, if a function has ill-behaved higher derivatives, then the quality of the polynomial interpolants may
actually decrease as the degree increases.

A classic example of this is the problem of interpolating the function f(x) = 1/(1 + 25x2) across the
interval [−1, 1]. See Figure 2.3. While the interpolant “captures” the trend of the function in the middle
part of the interval, it blows up near the endpoints. The script RungeEg explores the phenomenon in greater
detail.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2
Equal Spacing (n = 11)

Figure 2.3 The Runge phenomenon

Problems

P2.3.1 Write a Matlab script that compares HornerN and HornerV from the flop point of view.

P2.3.2 Write a Matlab script that repeatedly solicits an integer n and produces a reasonable plot of the function e(s) =
|s(s− 1) · · · (s− n + 1)/n!| on the interval [0, n − 1]. Verify experimentally that this function is never bigger than 1, a fact that
we used to establish (2.2).

P2.3.3 Write a Matlab function nBest(L,R,a,delta) that returns an integer n such that if pn−1(x) interpolates eax at
L + (i− 1)(R−L)/(n− 1), i = 1:n, then |pn−1(z) − eaz | ≤ δ for all z ∈ [L, R]. Try to make the value of n as small as you can.

2.4 Special Topics

As a follow-up to the preceding developments, we briefly discuss properties and algorithms associated with
divided differences, inverse interpolation, and two-dimensional linear interpolation. We also introduce the
important idea of trigonometric interpolation.
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2.4.1 Divided Differences

Returning to the n = 4 example used in the previous section, we can express c1, c2, c3, and c4 in terms of
the xi and f :

c1 = f(x1)

c2 =
f(x2)− f(x1)

x2 − x1

c3 =

f(x3)− f(x1)

x3 − x1

−
f(x2) − f(x1)

x2 − x1

x3 − x2

c4 =

f(x4)− f(x1)

x4 − x1

−
f(x2)− f(x1)

x2 − x1

x4 − x2
−

f(x3)− f(x1)

x3 − x1

−
f(x2) − f(x1)

x2 − x1

x3 − x2

x4 − x3
.

The coefficients are called divided differences. To stress the dependence of ck on f and x1, . . . , xk, we write

ck = f [x1, . . . , xk]

and refer to this quantity as the k − 1st order divided difference. Thus,

pn−1(x) =

n∑

k=1

f [x1, . . . , xk]




k−1∏

j=1

(x− xj)





is the n-point polynomial interpolant of f at x1, . . . , xn.
We now establish another recursive property that relates the divided differences of f on designated subsets

of {x1, . . . , xn}. Suppose pL(x) and pR(x) are the interpolants of f on {x1, . . . , xk−1} and {x2, . . . , xk},
respectively. It is easy to confirm that if

p(x) =
(x− xk)pL(x)− (x − x1)pR(x)

x1 − xk
, (2.3)

then p(xi) = f(xi), i = 1:k. Thus p(x) is the interpolant of f on {x1, . . . , xk} and so

p(x) = f [x1] + f [x1, x2](x− x1) + · · ·+ f [x1, . . . , xn](x− x1) · · · (x− xk−1). (2.4)

Note that since

pL(x) = f [x1] + f [x1, x2](x− x1) + · · ·+ f [x1, . . . , xk−1](x− x1) · · · (x− xk−2),

the coefficient of xk−2 is given by f [x1, . . . , xk−1]. Likewise, since

pR(x) = f [x2] + f [x2, x3](x− x2) + · · ·+ f [x2, . . . , xk](x− x2) · · · (x− xk−1),

the coefficient of xk−2 is given by f [x2, . . . , xk]. Comparing the coefficients of xk−1 in (2.3) and (2.4), we
conclude that

f [x1, . . . , xk] =
f [x2, . . . , xk]− f [x1, . . . , xk−1]

xk − x1
. (2.5)
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Figure 2.4 Divided differences
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Figure 2.5 Efficient computation of divided differences

The development of higher-order divided differences from lower order divided differences is illustrated in
Figure 2.4. Observe that the sought-after divided differences are along the left edge of the tree. Pruning the
excess, we see that the required divided differences can be built up as shown in Figure 2.5. This enables us
to rewrite InterpN as follows:

function c = InterpN2(x,y)

% c = InterpN2(x,y)

% The Newton polynomial interpolant.

% x is a column n-vector with distinct components and y is

% a column n-vector. c is a column n-vector with the property that if

% p(x) = c(1) + c(2)(x-x(1))+...+ c(n)(x-x(1))...(x-x(n-1))

% then

% p(x(i)) = y(i), i=1:n.

n = length(x);

for k = 1:n-1

y(k+1:n) = (y(k+1:n)-y(k:n-1)) ./ (x(k+1:n) - x(1:n-k));

end

c = y;
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A number of simplifications result if the xi are equally spaced. Assume that

xi = x1 + (i− 1)h,

where h > 0 is the spacing. From (2.5) we see that

f [x1, . . . , xk] =
f [x2, . . . , xk]− f [x1, . . . , xk−1]

h(k − 1)
.

This makes divided difference a scaling of the differences ∆f [x1, . . . , xk], which we define by

∆f [x1, . . . , xk] =






f(x1) if k = 1

∆f [x2, . . . , xk]−∆f [x1, . . . , xk−1] if k > 1
.

For example,

0th 1st 2nd 3rd 4th
Order Order Order Order Order

f1

f2 f2 − f1

f3 f3 − f2 f3 − 2f2 + f1

f4 f4 − f3 f4 − 2f3 + f2 f4 − 3f3 + 3f2 − f1

f5 f5 − f4 f5 − 2f4 + f3 f5 − 3f4 + 3f3 − f2 f5 − 4f4 + 6f3 − 4f2 + f1

It is not hard to show that

f [x1, . . . , xk] =
∆f [x1, . . . , xk]

hk−1(k − 1)!
.

The built-in function diff can be used to compute differences. In particular, if y is an n-vector, then

d = diff(y)

and

d = y(2:n) - y(1:n-1)

are equivalent. A second argument can be used to compute higher-order differences. For example,

d = diff(y,2)

computes the second-order differences:

d = y(3:n) - 2*y(2:n-1) + y(1:n-2)

Problems

P2.4.1 Compare the computed ci produced by InterpN and InterpN2.

P2.4.2 Complete the following Matlab function:

function [c,x,y] = InterpNEqual(fname,L,R,n)

Make effective use of the diff function.
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2.4.2 Inverse Interpolation

Suppose the function f(x) has an inverse on [a, b]. This means that there is a function g so that g(f(x)) = x
for all x ∈ [a, b]. Thus g(x) =

√
x is the inverse of f(x) = x2 on [0, 1]. If

a = x1 < x2 < · · · < xn = b

and yi = f(xi), then the polynomial that interpolates the data (yi, xi), i = 1:n is an interpolate of f ’s
inverse. Thus the script

x = linspace(0,1,6)’;

y = x.*x;

a = InterpV(y,x);

yvals = linspace(y(1),y(6));

xvals = HornerV(a,yvals);

plot(yvals,xvals);

plots a quintic interpolant of the square root function. This is called inverse interpolation, and it has
an important application in zero finding. Suppose f(x) is continuous and either monotone increasing or
decreasing on [a, b]. If f(a)f(b) < 0, then f has a zero in [a, b]. If q(y) is an inverse interpolant, then q(0)
can be thought of as an approximation to this root.

Problems

P2.4.3 Suppose we have three data points (x1, y1), (x2, y2), and (x3, y3) with the property that x1 < x2 < x3 and that y1 and
y3 are opposite in sign. Write a function root = InverseQ(x,y) that returns the value of the inverse quadratic interpolant at
0.

2.4.3 Interpolation in Two Dimensions

Suppose (x̃, ỹ) is inside the rectangle

R = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}.

Suppose f(x, y) is defined on R and that we have its values on the four corners

fac = f(a, c)

fbc = f(b, c)

fad = f(a, d)

fbd = f(b, d).

Our goal is to use linear interpolation to obtain an estimate of f(x̃, ỹ). Suppose λ ∈ [0, 1] with the property
that x̃ = (1− λ)a + λb. It follows that

fxc = (1 − λ)fac + λfbc

fxd = (1 − λ)fad + λfbd

are linearly interpolated estimates of f(x̃, c) and f(x̃, d), respectively. Consequently, if µ ∈ [0, 1] with
ỹ = (1− µ)c + µd, then a second interpolation between f1 and f2 gives an estimate of f(x̃, ỹ):

z = (1− µ)fxc + µfxd ≈ f(x̃, ỹ).

Putting it all together, we see that

z = (1− µ)((1− λ)fac + λfbc) + µ((1− λ)fad + λfbd)

≈ f((1 − λ)a + λb, (1− µ)c + µd).

Figure 2.6 depicts the interpolation points. To interpolate the values in a matrix of f(x, y) evaluations it
is necessary to “locate” the point at which the interpolation is required. The four relevant values from the
array must then be combined as described above:
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r(a, c)

r(a, (1− µ)c + µd))

r(a, d)

r (b, c)

r (b, (1− µ)c + µd))

r (b, d)

u

((1 − λ)a + λb, c)

u
((1− λ)a + λb, d)

u

Figure 2.6 Linear interpolation in two dimensions

function z = LinInterp2D(xc,yc,a,b,c,d,fA)

% z = LinInterp2D(xc,yc,a,b,n,c,d,m,fA)

% Linear interpolation on a grid of f(x,y) evaluations.

% xc, yc, a, b, c, and d are scalars that satisfy a<=xc<=b and c<=yc<=d.

% fA is an n-by-m matrix with the property that

%

% A(i,j) = f(a+(i-1)(b-a)/(n-1),c+(j-1)(d-c)/(m-1)) , i=1:n, j=1:m

%

% z is a linearly interpolated value of f(xc,yc).

[n,m] = size(fA);

% xc = a+(i-1+dx)*hx 0<=dx<=1

hx = (b-a)/(n-1); i = max([1 ceil((xc-a)/hx)]); dx = (xc - (a+(i-1)*hx))/hx;

% yc = c+(j-1+dy)*hy 0<=dy<=1

hy = (d-c)/(m-1); j = max([1 ceil((yc-c)/hy)]); dy = (yc - (c+(j-1)*hy))/hy;

z = (1-dy)*((1-dx)*fA(i,j)+dx*fA(i+1,j)) + dy*((1-dx)*fA(i,j+1)+dx*fA(i+1,j+1));

The following can be used for the table-generation across a uniform grid:

function fA = SetUp(f,a,b,n,c,d,m)

% Sets up a matrix of f(x,y) evaluations.

% f is a handle to a function of the form f(x,y).

% a, b, c, and d are scalars that satisfy a<=b and c<=d.

% n and m are integers >=2.

% fA is an n-by-m matrix with the property that

%

% A(i,j) = f(a+(i-1)(b-a)/(n-1),c+(j-1)(d-c)/(m-1)) , i=1:n, j=1:m

x = linspace(a,b,n);

y = linspace(c,d,m);

fA = zeros(n,m);

for i=1:n

for j=1:m

fA(i,j) = f(x(i),y(j));

end

end
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Problems

P2.4.4 Analogous to LinInterp2D, write a function CubicInterp2D(xc,yc,a,b,n,c,d,m,fA) that does cubic interpolation from
a matrix of f(x, y) evaluations. Start by figuring out “where” (xc, yc) is in the grid with respect to x = linspace(a,b,n) and
y = linspace(c,d,m). Suppose this is the situation: as in LinearInterp2D.

x
1

x
2

x
3

x
4

y
1

y
2

y
3

y
4

(x
c
,y

c
)

For i = 1:4, construct a cubic pi(x) that interpolates f at (x1, yi), (x2, yi), (x3, yi) and (x4, yi). Then construct a cubic q(y)
that interpolates (xc, pi(xc)), i = 1:4 and return the value of q(yc). The above picture/plan assumes that (xc, yc) is not in an
“edge tile” so you’ll have to work out something reasonable to do if that is the case.

P2.4.5 (a) Use SetUp to produce a matrix of function evaluations for

f(x, y) =
1

.2(x − 3)2 + .3 ∗ (y − 1)2 + .2
.

Set (a, b, n, c, d, m) = (0,5,300,0,3,150). (b) Produce a plot that shows what f “looks like” along the line segment {(x, y) | x =
5 − 5t, y = 3t, 0 ≤ t ≤ 1}. Do this by interpolating f at a sufficiently large number of points along the line segment.

P2.4.6 This problem is about two-dimensional linear interpolation inside a triangle. Suppose that we know the value of a
function f(u, v) at the vertices of triangle ABC and that we wish to estimate its value at a point P inside the following triangle:

A B

C

P

Consider the following method for doing this:

• Compute the intersection Q of line AP and line BC.

• Use linear interpolation to estimate f at Q from its value at B and C.

• Use linear interpolation to estimate f at P from its value at A and its estimate at Q.

Complete the following function so that it implements this method. Vectorization is not important.
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A B

C

Q

P

function fp = InterpTri(x,y,fvals,p)

% Suppose f(u,v) is a function of two variables defined everywhere in the plane.

% Assume that x, y, and fvals are column 3-vectors and p is a column 2-vector.

% Assume that (p(1),p(2)) is inside the triangle defined by (x(1),y(1)), (x(2),y(2)),

% and (x(3),y(3)) and that fvals(i) = f(x(i),y(i)) for i=1:3. fp is an estimate of

% f(p(1),p(2)) obtained by linear interpolation.

2.4.4 Trigonometric Interpolation

Suppose f(t) is a periodic function with period T , n = 2m, and that we want to interpolate the data
(t0, f0), . . . , (tn, fn) where fk = f(tk) and

tk = k
T

n
, k = 0:n.

Because the data is periodic it makes more sense to interpolate with a periodic function rather than with a
polynomial. So let us pursue an interpolant that is a linear combination of cosines and sines rather than an
interpolant that is a linear combination of 1, x, x2, etc.

Assuming that j is an integer, the functions cos(2πjt/T ) and sin(2πjt/T ) have the same period as f
prompting us to seek real scalars a0, . . . , am and b0, . . . , bm so that if

F (t) =

m∑

j=0

[
aj cos

(
2πj

T
t

)
+ bj sin

(
2πj

T
t

)]
,

then F (tk) = fk for k = 0:n. This is a linear system that consists of n + 1 equations in 2(m + 1) = n + 2
unknowns. However, we note that b0 and bm are not involved in any equation since sin(2πjt/T ) = 0 if
t = t0 = 0 or t = tn = T . Moreover, the k = 0 equation and the k = n equation are identical because of
periodicity. Thus, we really want to determine a0, . . . , am and b1, . . . , bm−1 so that if

F (t) = a0 +

m−1∑

j=1

[
aj cos

(
2πj

T
t

)
+ bj sin

(
2πj

T
t

)]
+ am cos

(
2πm

T
t

)
,

then F (tk) = f(tk) = fk for k = 0:n− 1. This is an n-by-n linear system in n unknowns:

fk = a0 +

m−1∑

j=1

(aj cos(kjπ/m) + bj sin(kjπ/m)) + (−1)kam k = 0:n− 1.
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Here is what the system looks like for the case n = 6 with angles specified in degrees:





f0

f1

f2

f3

f4

f5





=





cos(0) cos(0) cos(0) cos(0) sin(0) sin(0)

cos(0) cos(60) cos(120) cos(180) sin(60) sin(120)

cos(0) cos(120) cos(240) cos(360) sin(120) sin(240)

cos(0) cos(180) cos(360) cos(540) sin(180) sin(360)

cos(0) cos(240) cos(480) cos(720) sin(240) sin(480)

cos(0) cos(300) cos(600) cos(900) sin(300) sin(600)









a0

a1

a2

a3

b1

b2





=





1 1 1 1 0 0

1 1/2 −1/2 −1
√

3/2
√

3/2

1 −1/2 −1/2 1
√

3/2 −
√

3/2
1 −1 1 −1 0 0

1 −1/2 −1/2 1 −
√

3/2
√

3/2

1 1/2 −1/2 −1 −
√

3/2 −
√

3/2









a0

a1

a2

a3

b1

b2





.

For general even n, CSInterp sets up the defining linear system and solves for a and b:

function F = CSInterp(f)

% F = CSInterp(f)

% f is a column n vector and n = 2m.

% F.a is a column m+1 vector and F.b is a column m-1 vector so that if

% tau = (pi/m)*(0:n-1)’, then

% f = F.a(1)*cos(0*tau) +...+ F.a(m+1)*cos(m*tau) +

% F.b(1)*sin(tau) +...+ F.b(m-1)*sin((m-1)*tau)

n = length(f); m = n/2;

tau = (pi/m)*(0:n-1)’;

P = [];

for j=0:m, P = [P cos(j*tau)]; end

for j=1:m-1, P = [P sin(j*tau)]; end

y = P\f;

F = struct(’a’,y(1:m+1),’b’,y(m+2:n));

Note that the a and b vectors are returned in a structure. The matrix of coefficients can be shown to be
nonsingular so the interpolation process that we have presented is well-defined. However, it involves O(n3)
flops because of the linear system solve. In P2.4.7 we show how to reduce this to O(n2). The evaluation of
the trigonmetric interpolant can be handled by

function Fvals = CSeval(F,T,tvals)

% F.a is a length m+1 column vector, F.b is a length m-1 column vector,

% T is a positive scalar, and tvals is a column vector.

% If

% F(t) = F.a(1) + F.a(2)*cos((2*pi/T)*t) +...+ F.a(m+1)*cos((2*m*pi/T)*t) +

% F.b(1)*sin((2*pi/T)*t) +...+ F.b(m-1)*sin((2*m*pi/T)*t)

%

% then Fvals = F(tvals).

Fvals = zeros(length(tvals),1);

tau = (2*pi/T)*tvals;

for j=0:length(F.a)-1, Fvals = Fvals + F.a(j+1)*cos(j*tau); end

for j=1:length(F.b), Fvals = Fvals + F.b(j)*sin(j*tau); end
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We close this section by applying CSinterp and CSeval to a data fitting problem that confronted Gauss
in connection with the asteroid Pallas. The problem is to interpolate the following ascension-declination
data

α 0 30 60 90 120 150 180 210 240 270 300 330

d 408 89 -66 10 338 807 1238 1511 1583 1462 1183 804

with a function of the form

d(α) = a0 +

5∑

j=1

[aj cos(2πjα/360) + bj sin(2πjα/360)] + a6 cos(12πα/360).

Here is a script that does this and plots the results shown in Figure 2.7:

% Script File: Pallas

% Plots the trigonometric interpolant of the Gauss Pallas data.

A = linspace(0,360,13)’;

D = [ 408 89 -66 10 338 807 1238 1511 1583 1462 1183 804 408]’;

Avals = linspace(0,360,200)’;

F = CSInterp(D(1:12));

Fvals = CSeval(F,360,Avals);

plot(Avals,Fvals,A,D,’o’)

axis([-10 370 -200 1700])

set(gca,’xTick’,linspace(0,360,13))

xlabel(’Ascension (Degrees)’)

ylabel(’Declination (minutes)’)
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Figure 2.7 Fitting the Pallas data

Problems

P2.4.7 Observe that the matrix of coefficients P in CSinterp has the property that PT P is diagonal. Use this fact to reduce
the flop count in that function from O(n3) to O(n2). (With the fast Fourier transform it is possible to actually the flop count
to an amazing O(n log n). )
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M-Files and References

Script Files

ShowV Illustrates InterpV and HornerV

ShowN Illustrates InterpN and HornerN

ShowRungePhenom Examines accuracy of interpolating polynomial.
TableLookUp2D Illustrates SetUp and LinInterp2D.

Pallas Fits periodic data with CSInterp and CSEval.

Function Files

InterpV Construction of Vandermonde interpolating polynomial.
HornerV Evaluates the Vandermonde interpolating polynomial.
InterpNRecur Recursive construction of the Newton interpolating polynomial.
InterpN Nonrecursive construction of the Newton interpolating polynomial.
InterpN2 Another nonrecursive construction of the Newton interpolating polynomial.
HornerN Evaluates the Newton interpolating polynomial.
SetUp Sets up matrix of f(x,y) evaluation.
LinInterp2D 2-Dimensional Linear Interpolation.
Humps2D A sample function of two variables.
CSInterp Fits periodic data with sines and cosines.
CSEval Evaluates sums of sines and cosines.
ShowMatPolyTools Illustrates polyfit and polyval.

References

W.L. Briggs and V.E. Henson (1995). The DFT: An Owner’s Manual for the Discrete Fourier Transform,
SIAM Publications, Philadelphia, PA.

S.D. Conte and C. de Boor (1980). Elementary Numerical Analysis: An Algorithmic Approach, Third
Edition, McGraw-Hill, New York.

P. Davis (1963). Interpolation and Approximation, Blaisdell, New York.



Chapter 3

Piecewise Polynomial Interpolation

§3.1 Piecewise Linear Interpolation

§3.2 Piecewise Cubic Hermite Interpolation

§3.3 Cubic Splines

An important lesson from Chapter 2 is that high-degree polynomial interpolants at equally-spaced points
should be avoided. This can pose a problem if we are to produce an accurate interpolant across a wide
interval [α, β]. One way around this difficulty is to partition [α, β],

α = x1 < x2 < · · · < xn = β

and then interpolate the given function on each subinterval [xi, xi+1] with a polynomial of low degree. This
is the piecewise polynomial interpolation idea. The xi are called breakpoints.

We begin with piecewise linear interpolation working with both fixed and adaptively determined break-
points. The latter requires a classical divide-and-conquer approach that we shall use again in later chapters.

Piecewise linear functions do not have a continuous first derivative, and this creates problems in certain
applications. Piecewise cubic Hermite interpolants address this issue. In this setting, the value of the
interpolant and its derivative is specified at each breakpoint. The local cubics join in a way that forces first
derivative continuity.

Second derivative continuity can be achieved by carefully choosing the first derivative values at the
breakpoints. This leads to the topic of splines, a very important idea in the area of approximation and
interpolation. It turns out that cubic splines produce the smoothest solution to the interpolation problem.

3.1 Piecewise Linear Interpolation

Assume that x(1:n) and y(1:n) are given where α = x1 < · · · < xn = β and yi = f(xi), i = 1:n. If you
connect the dots (x1, y1), . . . , (xn, yn) with straight lines, as in Figure 3.1, then the graph of a piecewise
linear function is displayed. We already have considerable experience with such functions, for this is what
plot(x,y) displays.

3.1.1 Set-Up

The piecewise linear interpolant is built upon the local linear interpolants

Li(z) = ai + bi(z − xi),

where for i = 1:n− 1 the coefficients are defined by

ai = yi and bi =
yi+1 − yi

xi+1 − xi
.

1
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Figure 3.1 A piecewise linear function

Note that Li(z) is just the linear interpolant of f at the points x = xi and x = xi+1. We then define

L(z) =






L1(z) if x1 ≤ z < x2

L2(z) if x2 ≤ z < x3

...
...

Ln−1(z) if xn−1 ≤ z ≤ xn

.

The act of setting up L is the act of solving each of the local linear interpolation problems. The n−1 divided
differences b1, . . . , bn−1 can obviously be computed by a loop,

for i=1:n-1

b(i) = (y(i+1)-y(i))/(x(i+1)-x(i));

end

or by using pointwise division,

b = (y(2:n)-y(1:n-1)) ./ (x(2:n)-x(1:n-1))

or by using the built-in function diff:

b = diff(y) ./ diff(x)

Packaging these operations we obtain

function [a,b] = pwL(x,y)

% Generates the piecewise linear interpolant of the data specified by the

% column n-vectors x and y. It is assumed that x(1) < x(2) < ... < x(n).

%

% a and b are column (n-1)-vectors with the property that for i=1:n-1, the

% line L(z) = a(i) + b(i)z passes though the points (x(i),y(i)) and (x(i+1),y(i+1)).

n = length(x);

a = y(1:n-1);

b = diff(y) ./ diff(x);

Thus,

z = linspace(0,1,9);

[a,b] = pwL(z,sin(2*pi*z));

sets up a piecewise linear interpolant of sin(2πz) on a uniform, nine-point partition of [0, 1].
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3.1.2 Evaluation

To evaluate L at a point z ∈ [α, β], it is necessary to determine the subinterval that contains z. In our
problem x has the property that x1 < · · · < xn and so sum(x<=z) is the number of xi that are to the left of
z or equal to z. It follows that

if z == x(n);

i = n-1;

else

i = sum(x<=z);

end

determines the index i so that xi ≤ z ≤ xi+1. Notice the special handling of the case when z equals xn.
(Why?) A total of n comparisons are made because every component in x is compared to z.

A better approach is to exploit the monotonicity of the xi and to use binary search. Here is the main
idea. Suppose we have indices Left and Right so that xLeft ≤ z ≤ xRight. If mid = floor((Left + Right)/2),
then by checking z’s relation to xmid we can halve the search space by redefining Left or Right accordingly:

mid = floor((Left+Right)/2);

if z < x(mid)

Right = mid;

else

Left = mid;

end

Repeated application of this process eventually identifies the subinterval that houses z:

if z == x(n)

i = n-1;

else

Left = 1; Right = n;

while Right > Left+1

% z is in [x(Left),x(Right)].

mid = floor((Left+Right)/2);

if z < x(mid)

Right = mid;

else

Left = mid;

end

end

i = Left;

end

Upon completion, i contains the index of the subinterval that contains z. If n = 10 and z ∈ [x6, x7], then
here is the succession of Left and Right values produced by the binary search method:

Left Right mid

1 10 5
5 10 7
5 7 6
6 7 -

Roughly log2(n) comparisons are required to locate the appropriate subinterval. If n is large, then this is
much more efficient than the sum(x<z) method, which requires n comparisons.

For “random” z, we can do no better than binary search. However, if L is to be evaluated at an ordered
succession of points, then we can improve the subinterval location process. For example, suppose we want to
plot L on [α, β]. This requires the assembly of the values L(z1), . . . , L(zm) in a vector where m is a typically
large integer and α ≤ z1 ≤ · · · ≤ zm ≤ β. Rather than locate each zi via binary search, it is more efficient to



4 CHAPTER 3. PIECEWISE POLYNOMIAL INTERPOLATION

exploit the systematic “migration” of the evaluation point as it moves left to right across the subintervals.
Chances are that if i is the subinterval index associated with the current z-value, then i will be the correct
index for the next z-value. This “guess” at the correct subinterval can be checked before we launch the
binary search process.

function i = locate(x,z,g)

% Locates z in a partition x.

% x is column n-vector with x(1) < x(2) <...<x(n) and

% z is a scalar with x(1) <= z <= x(n).

% g (1<=g<=n-1) is an optional input parameter

% i is an integer such that x(i) <= z <= x(i+1). Before the general

% search for i begins, the value i=g is tried.

if nargin==3

% Try the initial guess.

if (x(g)<=z) & (z<=x(g+1))

i = g;

return

end

end

n = length(x);

if z==x(n)

i = n-1;

else

% Binary Search

Left = 1; Right = n;

while Right > Left+1

% x(Left) <= z <= x(Right)

mid = floor((Left+Right)/2);

if z < x(mid)

Right = mid;

else

Left = mid;

end

end

i = Left;

end

This function makes use of the return command. This terminates the execution of the function. It is
possible to restructure locate to avoid the return, but the resulting logic would be cumbersome. As an
application of locate, here is a function that produces a vector of L-values:

function LVals = pwLeval(a,b,x,zVals)

% Evaluates the piecewise linear polynomial defined by the column (n-1)-vectors

% a and b and the column n-vector x. It is assumed that x(1) < ... < x(n).

% zVals is a column m-vector with each component in [x(1),x(n)].

% LVals is a column m-vector with the property that LVals(j) = L(zVals(j))

% for j=1:m where L(z)= a(i) + b(i)(z-x(i)) for x(i)<=z<=x(i+1).

m = length(zVals); LVals = zeros(m,1); g = 1;

for j=1:m

i = locate(x,zVals(j),g);

LVals(j) = a(i) + b(i)*(zVals(j)-x(i));

g = i;

end
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Figure 3.2 Piecewise linear approximation

The following script illustrates the use of this function, producing a sequence of piecewise linear approxima-
tions to the built-in function

humps(x) =
1

(x− .3)2 + .01
+

1

(x− .9)2 + .04
− 6.

% Script File: ShowPWL1

% Convergence of the piecewise linear interpolant to

% humps(x) on [0,3]

close all

z = linspace(0,3,200)’;

fvals = humps(z);

for n = [5 10 25 50]

figure

x = linspace(0,3,n)’;

y = humps(x);

[a,b] = pwL(x,y);

Lvals = pwLEval(a,b,x,z);

plot(z,Lvals,z,fvals,’--’,x,y,’o’);

title(sprintf(’Interpolation of humps(x) with pwL, n = %2.0f’,n))

end

(See Figure 3.2 for the 10-point case.) Observe that more interpolation points are required in regions where
humps is particularly nonlinear.

3.1.3 A Priori Determination of the Breakpoints

Let us consider how many breakpoints we need to obtain a satisfactory piecewise linear interpolant. If
z ∈ [xi, xi+1], then from Theorem 2,

f(z) = L(z) +
f(2)(η)

2
(z − xi)(z − xi+1),

where η ∈ [xi, xi+1]. If the second derivative of f on [α, β] is bounded by M2 and if h̄ is the length of the
longest subinterval in the partition, then it is not hard to show that

|f(z) − L(z)| ≤ M2h̄
2

8
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for all z ∈ [α, β].
A typical situation where this error bound can be put to good use is in the design of the underlying

partition upon which L is based. Assume that L(x) is based on the uniform partition

α = x1 < x2 < · · · < xn = β,

where

xi = α +
i− 1

n − 1
(β − α).

To ensure that the error between L and f is less than or equal to a given positive tolerance δ, we insist that

|f(z) − L(z)| ≤ M2h̄
2

8
=

M2

8

(
β − α

n − 1

)2

≤ δ.

From this we conclude that n must satisfy

n ≥ 1 + (β − α)
√

M2/8δ.

For the sake of efficiency, it makes sense to let n be the smallest integer that satisfies this inequality:

function [x,y] = pwLstatic(f,M2,alpha,beta,delta)

% Generates interpolation points for a piecewise linear approximation of

% prescribed accuracy.

%

% f is a handle that references a function f(x).

% Assume that f can take vector arguments.

% M2 is an upper bound for|f"(x)| on [alpha,beta].

% alpha and beta are scalars with alpha<beta.

% delta is a positive scalar.

%

% x and y column n-vectors with the property that y(i) = f(x(i)), i=1:n.

% The piecewise linear interpolant L(x) of this data satisfies

% |L(z) - f(z)| <= delta for x(1) <= z <= x(n).

n = max(2,ceil(1+(beta-alpha)*sqrt(M2/(8*delta))));

x = linspace(alpha,beta,n)’;

y = f(x);

The partition produced by pwLstatic does not take into account the sampled values of f . As a result, the
uniform partition produced may be much too refined in regions where f ′′ is much smaller than the bound
M2.

3.1.4 Adaptive Piecewise Linear Interpolation

Suppose f is very nonlinear over just a small portion of [α, β] and very smooth elsewhere. (See Figure 3.2.)
This means that if we use pwLstatic to generate the partition, then we are compelled to use a large M2.
Lots of subintervals and (perhaps costly) f-evaluations will be required. Over regions where f is smooth,
the partition will be overly refined.

To address this problem, we develop a recursive partitioning algorithm that “discovers” where f is “extra
nonlinear” and that clusters the breakpoints accordingly. A definition simplifies the discussion. We say that
the subinterval [xL, xR] is acceptable if

∣∣∣∣f
(

xL + xR

2

)
− f(xL) + f(xR)

2

∣∣∣∣ ≤ δ

or if
xR− xL ≤ hmin,
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where δ > 0 and hmin > 0 are (typically small) refinement parameters. The first condition measures the
discrepancy between the line that connects (xL, f(xL)) and (xR, f(xR)) and the function f(x) at the interval
midpoint m = (xL+xR)/2. The second condition says that sufficiently short subintervals are also acceptable
where “sufficiently short” means less than hmin in length.

One more definition is required before we can describe the complete partitioning process. A partition
x1 < · · · < xn is acceptable if each subinterval is acceptable. Note that if

xL = x
(L)
1 < · · · < x(L)

n = m

is an acceptable partition of [xL, m] and if

m = x
(R)
1 < · · · < x(R)

n = xR

is an acceptable partition of [m, xR], then

xL = x
(L)
1 < · · · < x(L)

n < x
(R)
2 < · · · < x(R)

n = xR

is an acceptable partition of [xL, xR]. This sets the stage for a recursive determination of an acceptable
partition:

function [x,y] = pwLadapt(f,xL,fL,xR,fR,delta,hmin)

% Adaptively determines interpolation points for a piecewise linear

% approximation of a specified function.

%

% f is a handle that references a function of the form y = f(u).

% xL and xR are real scalars and fL = f(xL) and fR = f(xR).

% delta and hmin are positive real scalars that determine accuracy.

%

% x and y are column n-vectors with the property that

% xL = x(1) < ... < x(n) = xR

% and y(i) = f(x(i)), i=1:n. Each subinterval [x(i),x(i+1)] is

% either <= hmin in length or has the property that at its midpoint m,

% |f(m) - L(m)| <= delta where L(x) is the line that connects (x(i),y(i))

% and (x(i+1),y(i+1)).

if (xR-xL) <= hmin

% Subinterval is acceptable

x = [xL;xR];

y = [fL;fR];

else

mid = (xL+xR)/2;

fmid = f(mid);

if (abs(((fL+fR)/2) - fmid) <= delta )

% Subinterval accepted.

x = [ xL;xR];

y = [fL;fR];

else

% Produce left and right partitions, then synthesize.

[xLeft,yLeft] = pwLAdapt(f,xL,fL,mid,fmid,delta,hmin);

[xRight,yRight] = pwLAdapt(f,mid,fmid,xR,fR,delta,hmin);

x = [ xLeft;xRight(2:length(xRight))];

y = [ yLeft;yRight(2:length(yRight))];

end

end
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Figure 3.3 Static versus adaptive approximation

The idea behind the function is to check and see if the input interval is acceptable. If it is not, then acceptable
partitions are obtained for the left and right half intervals. These are then “glued” together to obtain the
final, acceptable partition.

The distinction between static and adaptive piecewise linear interpolation is revealed by running the
following script:

% Script File: ShowpwL2

% Compares pwLstatic and pwLsdapt on [0,3] using the function

%

% humps(x) = 1/((x-.3)^2 + .01) + 1/((x-.9)^2+.04)

%

close all

% Second derivative estimate based on divided differences

z = linspace(0,1,101);

humpvals = humps(z);

M2 = max(abs(diff(humpvals,2)/(.01)^2));

for delta = [1 .5 .1 .05 .01]

figure

[x,y] = pwLstatic(@humps,M2,0,3,delta);

subplot(1,2,1)

plot(x,y,’.’);

title(sprintf(’delta = %8.4f Static n= %2.0f’,delta,length(x)))

[x,y] = pwLadapt(@humps,0,humps(0),3,humps(3),delta,.001);

subplot(1,2,2)

plot(x,y,’.’);

title(sprintf(’delta = %8.4f Adapt n= %2.0f’,delta,length(x)))

set(gcf,’position’,[200 200 1200 500])

end

(See Figure 3.3.) The humps function is very nonlinear in the vicinity of x = .3. A second derivative bound
is approximated with differences and used in pwLstatic. In the example approximately four times as many
function evaluations are required when the static approach is taken.
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Problems

P3.1.1 Generalize locate so that it tries i = g + 1 and i = g − 1 before resorting to binary search. (Take care to guard against
subscript out-of-range.) Implement pwLeval with this modified subinterval locator and document the speed-up.

P3.1.2 Write a function i = LocateUniform(alpha,beta,n,z) that assumes [α,β] is partitioned into n−1 subintervals of equal
length and returns the index of the interval that houses z.

P3.1.3 What happens if pwLadapt is applied to sin(x) with [α,β] = [0,2π]?

P3.1.4 Describe what would happen if pwLadapt is called with delta = 0.

P3.1.5 Describe why the number of recursive calls in pwLadapt is bounded if |f ′′(x)| is bounded on [α,β].

P3.1.6 Modify pwLadapt so that a subinterval is accepted if |f(p) − λ(p)| and |f(q) − λ(q)| are less than or equal to delta,
where p = (2xL+xR)/3, q = (xL+2xR)/3, and λ(x) is the line that connects (xL,fL) and (xR,fR). Avoid redundant function
evaluations.

P3.1.7 If pwLadapt is applied to the function f(x) =
√

x on the interval [0,1], then a partition x(1:n) is produced that satisfies

x2 − x1 ≤ x3 − x2 ≤ · · · ≤ xn − xn−1.

Why?

P3.1.8 Generalize pwLadapt(f,xL,fL,xR,fR,delta,hmin) to

function [x,y,eTaken] = pwLadapt(f,xL,fL,xR,fR,delta,hmin,eMax)

so that no more than eMax function evaluations are taken. The value of eTaken should be the actual number of function
evaluations spent. Let n = length(x). In a “successful” call, x(n) should equal xR, meaning that a satisfactory piecewise
linear approximation was found extending across the entire interval [xL,xR]. If this is not the case, then the evaluation limit
was encountered before xR was reached and x(n) will be less than xR. In this situation vectors returned define a satisfactory
piecewise linear approximation across [x(1),x(n)].

P3.1.9 Notice that in pwLadapt the vector y does not include all the computed function evaluations. So that these evaluations
are not lost, generalize pwLadapt to

[x,y,xUnused,yUnused] = pwLadaptGen(f,xL,fL,xR,fR,delta,hmin,...)

where (a) the x and y vectors are identical to what pwLadapt computes and (b) xUnused and yUnused are column vectors that
contain the x-values and function values that were computed, but not included in x and y. Thus, the xUnused and yUnused

vectors should have the property that yUnused(i) = feval(fname,xUnused(i)), i = 1:length(xUnused). You are allowed to
extend the calling sequence if convenient. In that case, indicate the values that should be passed through these new parameters
at the top-level call. xUnused and yUnused should be assigned the empty vector [ ] if xR-xL<hmin. The order of the values in
xUnused is not important.

P3.1.10 Vectorize locate and pwLeval.

3.2 Piecewise Cubic Hermite Interpolation

Now let’s graduate to piecewise cubic functions. With the increase in degree we can obtain a smoother fit
to a given set of n points. The idea is to interpolate both f and its derivative with a cubic on each of the
subintervals.

3.2.1 Cubic Hermite Interpolation

So far we have only considered the interpolation of function values at distinct points. In the Hermite
interpolation problem, both the function and its derivative are interpolated. To illustrate the idea, we
consider the interpolation of the function f(z) = cos(z) at the points x1 = 0, x2 = δ, x3 = 3π/2 − δ, and
x4 = 3π/2 by a cubic p3(z). For small δ we notice that p3(z) seems to interpolate both f and f ′ at z = 0 and
z = 3π/2. The interpolation shown in Figure 3.4 on the next page was obtained by running the following
script:
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Figure 3.4 A “nearly” Hermite interpolation

% Script File: ShowHermite

% Plots a succession of cubic interpolants to cos(x).

% x(2) converges to x(1) = 0 and x(3) converges to x(4) = 3pi/2.

close all

z = linspace(-pi/2,2*pi,100);

CosValues = cos(z);

for d = [1 .5 .3 .1 .05 .001]

figure

xvals = [0;d;(3*pi/2)-d;3*pi/2];

yvals = cos(xvals);

c = InterpN(xvals,yvals);

CubicValues = HornerN(c,xvals,z);

plot(z,CosValues,z,CubicValues,’--’,xvals,yvals,’*’)

axis([-.5 5 -1.5 1.5])

title(sprintf(’Interpolation of cos(x). Separation = %5.3f’,d))

end

As the points coalesce, the cubic converges to a cubic interpolant of the cosine and its derivative at the
points 0 and 3π/2. This is called the Hermite cubic interpolant.

In the general cubic Hermite interpolation problem, we are given function values yL and yR and derivative
values sL and sR and seek coefficients a, b, c, and d so that if

q(z) = a + b(z − xL) + c(z − xL)2 + d(z − xL)2(z − xR),

then
q(xL) = yL q(xR) = yR

q′(xL) = sL q′(xR) = sR.

Each of these equations “says” something about the unknown coefficients. Noting that

q′(z) = b + 2c(z − xL) + d(2(z − xL)(z − xR) + (z − xL)2),

we see that
a = yL a + b∆x + c(∆x)2 = yR

b = sL b + 2c∆x + d(∆x)2 = sR,
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where ∆x = xR − xL. Expressing this in matrix-vector we obtain





1 0 0 0
0 1 0 0
1 ∆x (∆x)2 0
0 1 2∆x (∆x)2









a
b
c
d



 =





yL

sL

yR

sR



 .

The solution to this triangular system is straightforward:

a = yL

b = sL

c =
y′L − sL

∆x

d =
sR + sL − 2y′L

(∆x)2

where

y′L =
yR − yL

∆x
=

yR − yL

xR − xL
.

Thus, we obtain

function [a,b,c,d] = HCubic(xL,yL,sL,xR,yR,sR)

% Cubic Hermite interpolation

% (xL,yL,sL) and (xR,yR,sR) are x-y-slope triplets with xL and xR distinct.

% a,b,c,d are real numbers with the property that if

% p(z) = a + b(z-xL) + c(z-xL)^2 + d(z-xL)^2(z-xR)

% then p(xL)=yL, p’(xL)=sL, p(xR)=yR, p’(xR)=sR.

a = yL; b = sL; delx = xR - xL;

yp = (yR - yL)/delx;

c = (yp - sL)/delx;

d = (sL - 2*yp + sR)/(delx*delx);

An error expression for the cubic Hermite interpolant can be derived from Theorem 3.

Theorem 3 Suppose f(z) and its first four derivatives are continuous on [xL, xR] and that the constant M4

satisfies
|f(4)(z)| ≤M4

for all z ∈ [L, R]. If q is the cubic Hermite interpolant of f at xL and xR, then

|f(z) − q(z)| ≤ M4

384
h4,

where h = xR − xL.

Proof If qδ(z) is the cubic interpolant of f at xL, xL + δ, xR− δ, and xR, then from Theorem 2 we have

|f(z) − qδ(z)| ≤ M4

24
|(z − xL)(z − xL − δ)(z − xR + δ)(z − xR)|

for all z ∈ [xL, xR]. We assume without proof1 that

lim
δ→0

qδ(z) = q(z)

and so

|f(z) − q(z)| ≤ M4

24
|(z − xL)(z − xL)(z − xR)(z − xR)|.

1But check out ShowHermite
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The maximum value of the quartic polynomial on the right occurs at the midpoint z = xL + h/2 and so for
all z in the interval [xL, xR] we have

|f(z) − q(z)| ≤ M4

24

(
h

2

)4

=
M4

384
h4. �

Theorem 3 says that if the interval length is divided by 10, then the error bound is reduced by a factor of
104.

3.2.2 Representation and Set-Up

We now show how to glue a sequence of Hermite cubic interpolants together so that the resulting piecewise
cubic polynomial C(z) interpolates the data (x1, y1), . . . , (xn, yn), with the prescribed slopes s1, . . . , sn. To
that end we assume x1 < x2 < · · · < xn and define the ith local cubic by

qi(z) = ai + bi(z − xi) + ci(z − xi)
2 + di(z − xi)

2(z − xi+1).

Define the piecewise cubic polynomial by

C(z) =






q1(z) if x1 ≤ z < x2

q2(z) if x2 ≤ z < x3

...
...

qn−1(z) if xn−1 ≤ z ≤ xn

.

Our goal is to determine a(1:n− 1), b(1:n− 1), c(1:n− 1), and d(1:n− 1) so that

C(xi) = yi

C ′(xi) = si

, i = 1:n

This will be the case if we simply solve the following n− 1 cubic Hermite problems:

qi(xi) = yi

q′i(xi) = si

qi(xi+1) = yi+1

q′i(xi+1) = si+1

The results of §3.2.1 apply:

ai = yi, bi = si, ci =
y′i − si

∆xi
, di =

si+1 + si − 2y′i
(∆xi)2

,

where ∆xi = xi+1 − xi and

y′i =
yi+1 − yi

∆xi
=

yi+1 − yi

xi+1 − xi
.

We could use HCubic to resolve the coefficients:

for i=1:n-1

[a(i), b(i), c(i), d(i)] = HCubic(x(i),y(i),s(i),x(i+1),y(i+1),s(i+1))

end

But a better solution is to vectorize the computation, and this gives
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function [a,b,c,d] = pwC(x,y,s)

% Piecewise cubic Hermite interpolation.

%

% x,y,s column n-vectors with x(1) < ... < x(n)

%

% a,b,c,d column (n-1)-vectors that define a continuous, piecewise

% cubic polynomial q(z) with the property that for i = 1:n,

%

% q(x(i)) = y(i) and q’(x(i)) = s(i).

%

% On the interval [x(i),x(i+1)],

%

% q(z) = a(i) + b(i)(z-x(i)) + c(i)(z-x(i))^2 + d(i)(z-x(i))^2(z-x(i+1)).

n = length(x);

a = y(1:n-1);

b = s(1:n-1);

Dx = diff(x);

Dy = diff(y);

yp = Dy ./ Dx;

c = (yp - s(1:n-1)) ./ Dx;

d = (s(2:n) + s(1:n-1) - 2*yp) ./ (Dx.* Dx);

If M4 bounds |f(4)(x)| on the interval [x1, xn], then Theorem 3 implies that

|f(z) −C(z)| ≤ M4

384
h̄4

for all z ∈ [x1, xn], where h̄ is the length of the longest subinterval (i.e., maxi|xi+1 − xi|.)

3.2.3 Evaluation

The evaluation of C(z) has two parts. As with any piecewise polynomial that must be evaluated, the
position of z in the partition must be ascertained. Once that is accomplished, the relevant local cubic must
be evaluated. Here is a function that can be used to evaluate C at a vector of z values:

function Cvals = pwCeval(a,b,c,d,x,zVals)

% Evaluates the pwC defined by the column (n-1)-vectors a,b,c, and

% d and the column n-vector x. It is assumed that x(1) < ... < x(n).

% zVals is a column m-vector with each component in [x(1),x(n)].

%

% CVals is a column m-vector with the property that CVals(j) = C(zVals(j))

% for j=1:m where on the interval [x(i),x(i+1)]

%

% C(z)= a(i) + b(i)(z-x(i)) + c(i)(z-x(i))^2 + d(i)(z-x(i))^2(z-x(i+1))

m = length(zVals);

Cvals = zeros(m,1);

g=1;

for j=1:m

i = Locate(x,zVals(j),g);

Cvals(j) = d(i)*(zVals(j)-x(i+1)) + c(i);

Cvals(j) = Cvals(j)*(zVals(j)-x(i)) + b(i);

Cvals(j) = Cvals(j)*(zVals(j)-x(i)) + a(i);

g = i;

end
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Analogous to pwLeval, we use Locate to determine the subinterval that houses the jth evaluation point zj.
The cubic version of HornerN is then used to evaluate the appropriate local cubic. The following script file
illustrates the use of pwC and pwCeval:

% Script File: ShowpwCH

% Convergence of the piecewise cubic hermite interpolant to

% exp(-2x)sin(10*pi*x) on [0,1].)

close all

z = linspace(0,1,200)’;

fvals = exp(-2*z).*sin(10*pi*z);

for n = [4 8 16 24]

x = linspace(0,1,n)’;

y = exp(-2*x).*sin(10*pi*x);

s = 10*pi*exp(-2*x).*cos(10*pi*x)-2*y;

[a,b,c,d] = pwC(x,y,s);

Cvals = pwCeval(a,b,c,d,x,z);

figure

plot(z,fvals,z,Cvals,’--’,x,y,’*’);

title(sprintf(’Interpolation of exp(-2x)sin(10pi*x) with pwCH, n = %2.0f’,n))

end

legend(’e^{-2z}sin(10\pi z)’,’The pwC interpolant’)

Sample output is displayed in Figure 3.5.
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Interpolation of exp(−2x)sin(10pi*x) with pwCH, n =  8

 

 

e
−2z

sin(10π z)

The pwC interpolant

Figure 3.5 Piecewise cubic Hermite interpolant of e−2x sin(10πx), n = 8

Problems

P3.2.1 Write a function [a,b,c,d] = pwCstatic(f,fp,M4,alpha,beta,delta) analogous to pwLstatic. It should produce a
piecewise cubic Hermite approximation with uniform spacing. It should use the error result of Theorem 3 and the 4th derivative
bound M4 to determine the partition. The parameters f and fp should be handles that reference the function and its derivative
respectively.

P3.2.2 Write a recursive function

function [x,y,s] = pwCAdapt(f,fp,L,fL,DfL,R,fR,DfR,delta,hmin)

analogous to pwLadapt. Use the same interval acceptance tests as in pwLadapt. The parameters f and fp should be handles
that reference the function and its derivative respectively. Use both pwLAdapt and pwCAdapt to produce approximations to
f(x) =

√
x on the interval [.001,9]. Fix hmin = .001. Print a table that shows the number of partition points computed by

pwLadapt and pwCadapt for delta = .1, .01, .001, .0001, and .00001.

P3.2.3 Complete the following function:
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function [R,fR] = stretch(L,fL,tol);

% L,fL are scalars that satisfy fL = exp(-L) and tol is a positive real.

% R,fR are scalars that satisfy fR = exp(-R) with the property that if q(z) is the cubic

% hermite interpolant of exp(-z) at z=L and z=R, then |q(z) - exp(-z)| <= tol on [L,R].

Make effective use of the error bound in Theorem 3 when choosing R. Hint: How big can you make R and still guarantee the
required accuracy? Making effective use of stretch complete the following:

function [x,y] = pwCexp(a,b,tol)

% a,b are scalars that satisfy a < b and tol is a positive real.

% x,y are column n-vectors where a = x(1) < x(2) < ... < x(n) = b

% and y(i) = exp(-x(i)), i=1:n. The partition is chosen so that if C(z)

% is the piecewise cubic hermite interpolant of exp(-z) on this partition,

% then |C(z) - exp(-z)| <= tol for all z in [a,b]

P3.2.4 We want to interpolate a function f on [a, b] with error less than tol. When is it cheaper to set up a piecewise linear
interpolant L(z) with a uniform partition than a piecewise cubic hermite interpolant C(z) with a uniform partition? Your
answer should make use of the following facts and assumptions:

• If ` is the linear interpolant of f on an interval [α,β], then on that interval the error is no bigger than M2(β − α)2/8,
where M2 is an upper bound for |f (2)(z)|. Assume that M2 is known.

• If p is the cubic hermite interpolant of f on an interval [α,β], then on that interval the error is no bigger than M4(β −
α)4/384, where M4 is an upper bound for |f (4)(z)|. Assume that M4 is known.

• A vectorized Matlab implementation of the function f is available and it requires σn seconds to execute when applied
to an n-vector. Assume that σ is known.

• A vectorized Matlab implementation of the function f ′ is available and it requires τn seconds to execute when applied
to an n-vector. Assume that τ is known.

P3.2.5 Consider the quartic polynomial q(t) having the form

q(t) = a1 + a2t + a3t2 + a4t2(t − 1) + a5t2(t − 1)2.

Given scalars v0, s0, v1, s1, vτ , and τ , our goal is to determine the ai so that

q(0) = v0 q′(0) = s0 q(1) = v1 q′(1) = s1 q(τ ) = vτ

We refer to this fourth degree Hermite interpolation problem as the “H4 problem” and to q as an “H4 interpolant.” Note that
its value is prescribed at three points and that at two of those points we also specify its slope. Complete the following function:

function A = H4(v0,s0,v1,s1,vtau,tau)

%

% Assume that the six inputs are length-n column vectors.

% A is an n-by-5 matrix with the property that if qi(t) is the quartic polynomial

%

% qi(t) = A(i,1) + A(i,2)t + A(i,3)t^2 + A(i,4)t^2(t-1) + A(i,5)t^2(t-1)^2

%

% then qi(0) = v0(i), qi’(0) = s0(i), qi(1) = v1(i), qi’(1) = s1(i), and qi(tau(i)) = vtau(i)

% for i=1:n.

Your implementation should not involve any loops. Also develop a vectorized implementation for evaluation:

function Y = H4Eval(A,tval)

% Assume that A is an n-by-5 matrix and that tval is a length-m row vector.

% For i=1:n, let qi(t) be the quartic polynomial

%

% qi(t) = A(i,1) + A(i,2)t + A(i,3)t^2 + A(i,4)t^2(1-t) + A(i,5)t^2(1-t)^2.

%

% Y is an n-by-m matrix with the property that Y(i,j) = qi(tval(j)) for

% i=1:n and j=1:m.

To test your implementations, write a script that plots in a single window the functions f(t), q1(t), and q2(t) where f(t) =
e−t sin(5t) and q1 and q2 are H4 interpolants that satisfy

q1(0) = f(0) q′1(0) = f ′(0) q1(1) = f(1) q′1(1) = f ′(1) q1(.5) = f(.5)

q2(1) = f(1) q′2(1) = f ′(1) q2(2) = f(2) q′2(2) = f ′(2) q2(1.5) = f(1.5).

There should be just a single call to H4 and H4Eval. In the same plot window, plot q1 across [0,1] and q2 across [1,2]. Print the

coefficients of the two interpolants.
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3.3 Cubic Splines

In the piecewise cubic Hermite interpolation problem, we are given n triplets

(x1, y1, s1), . . . , (xn, yn, sn)

and determine a function C(x) that is piecewise cubic on the partition x1 < · · · < xn with the property that
C(xi) = yi and C ′(xi) = si for i = 1:n. This interpolation strategy is subject to a number of criticisms:

• The function C(z) does not have a continuous second derivative: Its display may be too crude in
graphical applications, because the human eye can detect discontinuities in the second derivative.

• In other applications where C and its derivatives are part of a larger mathematical landscape, there
may be difficulties if C ′′(x) is discontinuous. For example, trouble arises if C is a distance function.

• In experimental settings where the yi are “instrument readings,” we may not have the first derivative
information required by the cubic Hermite process. Indeed, the underlying function f may not be
known explicitly.

These reservations prompt us to pose the cubic spline interpolation problem:

Given (x1, y1), . . . , (xn, yn) with α = x1 < · · · < xn = β, find a
piecewise cubic interpolant S(z) with the property that S, S′, and
S′′ are continuous.

The function S(z) that solves this problem is a cubic spline interpolant. This can be accomplished by
choosing the appropriate slope values s1, . . . , sn.

3.3.1 Continuity at the Interior Breakpoints

Assume that S(z) is the cubic Hermite interpolant of the data (xi, yi, si) for i = 1:n. We ask the following
question: Is it possible to choose s1, . . . , sn so that the second derivative of S is continuous? Let us look at
what happens to S′′ at each of the “interior” breakpoints x2, . . . , xn−1. To the left of xi+1, S(z) is defined
by the local cubic

qi(z) = yi + si(z − xi) +
y′i − si

∆xi
(z − xi)

2 +
si + si+1 − 2y′i

(∆xi)2
(z − xi)

2(z − xi+1),

where y′i = (yi+1− yi)/(xi+1−xi) and ∆xi = xi+1−xi. The second derivative of this local cubic is given by

q′′i (z) = 2
y′i − si

∆xi
+

si + si+1 − 2y′i
(∆xi)2

[4(z − xi) + 2(z − xi+1)] . (3.1)

Likewise, to the right of xi+1 the piecewise cubic C(z) is defined by

qi+1(z) = yi+1 + si+1(z − xi+1) +
y′i+1 − si+1

∆xi+1
(z − xi+1)

2 +
si+1 + si+2 − 2y′i+1

(∆xi+1)2
(z − xi+1)

2(z − xi+2).

The second derivative of this local cubic is given by

q′′i+1(z) = 2
y′i+1 − si+1

∆xi+1
+

si+1 + si+2 − 2y′i+1

(∆xi+1)2
[4(z − xi+1) + 2(z − xi+2)] . (3.2)

To force second derivative continuity at xi+1, we insist that

q′′i (xi+1) =
2

∆xi
(2si+1 + si − 3y′i)
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and

q′′i+1(xi+1) =
2

∆xi+1
(3y′i+1 − 2si+1 − si+2)

be equal. That is,

∆xi+1si + 2 (∆xi + ∆xi+1) si+1 + ∆xisi+2 = 3
(
∆xi+1y

′
i + ∆xiy

′
i+1

)
(3.3)

for i = 1:n− 2. If we choose s1, . . . , sn to satisfy these equations, then S′′(z) is continuous.

Before we plunge into the resolution of these equations for general n, we acquire some intuition by
examining the n = 7 case. The equations designated by (3.3) are as follows:

i = 1 ⇒ ∆x2s1 + 2(∆x1 + ∆x2)s2 + ∆x1s3 = 3(∆x2y
′
1 + ∆x1y

′
2)

i = 2 ⇒ ∆x3s2 + 2(∆x2 + ∆x3)s3 + ∆x2s4 = 3(∆x3y
′
2 + ∆x2y

′
3)

i = 3 ⇒ ∆x4s3 + 2(∆x3 + ∆x4)s4 + ∆x3s5 = 3(∆x4y
′
3 + ∆x3y

′
4)

i = 4 ⇒ ∆x5s4 + 2(∆x4 + ∆x5)s5 + ∆x4s6 = 3(∆x5y
′
4 + ∆x4y

′
5)

i = 5 ⇒ ∆x6s5 + 2(∆x5 + ∆x6)s6 + ∆x5s7 = 3(∆x6y
′
5 + ∆x5y

′
6).

Notice that we have five constraints and seven parameters and therefore two “degrees of freedom.” If we
move two of the parameters (s1 and s7) to the right hand side and assemble the results in matrix-vector
form, then we obtain a 5-by-5 linear system

Ts(2:6) = T





s2

s3

s4

s5

s6





=





3(∆x2y
′
1 + ∆x1y

′
2)−∆x2s1

3(∆x3y
′
2 + ∆x2y

′
3)

3(∆x4y
′
3 + ∆x3y

′
4)

3(∆x5y
′
4 + ∆x4y

′
5)

3(∆x6y
′
5 + ∆x5y

′
6)−∆x5s7





= r,

where

T =





2(∆x1 + ∆x2) ∆x1 0 0 0

∆x3 2(∆x2 + ∆x3) ∆x2 0 0

0 ∆x4 2(∆x3 + ∆x4) ∆x3 0

0 0 ∆x5 2(∆x4 + ∆x5) ∆x4

0 0 0 ∆x6 2(∆x5 + ∆x6)





.

Matrices like this that are zero everywhere except on the diagonal, subdiagonal, and superdiagonal are said
to be tridiagonal.

Different choices for the end slopes s1 and sn yield different cubic spline interpolants. Having defined
the end slopes, the interior slopes s(2:n − 1) ar determined by solving an (n − 2)-by-(n − 2) linear system.
In each case that we consider here, the matrix of coefficients looks like

T =





t11 t12 0 · · · 0

∆x3 2(∆x2 + ∆x3) ∆x2

...

...
. . .

. . .
. . .

...
0 ∆xn−2 2(∆xn−3 + ∆xn−2) ∆xn−3

0 · · · 0 tn−2,n−3 tn−2,n−2





,

while the right-hand side r has the form
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r =





r1

3(∆x3y
′
2 + ∆x2y

′
3)

...
3(∆xn−2y

′
n−3 + ∆xn−3y

′
n−2)

rn−2




.

As we show in the next subsection, the values of t11, t12, and r1 depend on how s1 is chosen. The values
of tn−2,n−3, tn−2,n−2, and rn−2 depend on how sn is defined. Moreover, the T matrices that emerge can be
shown to be nonsingular.

The following fragment summarizes what we have established so far about the linear system Ts(2:n−1) =
r:

n=length(x);

Dx = diff(x);

yp = diff(y) ./ Dx;

T = zeros(n-2,n-2);

r = zeros(n-2,1);

for i=2:n-3

T(i,i) = 2(Dx(i)+Dx(i+1));

T(i,i-1) = Dx(i+1);

T(i,i+1) = Dx(i);

r(i) = 3(Dx(i+1)*yp(i) + Dx(i)*yp(i+1));

end

This sets up all but the first and last rows of T and all but the first and last components of r. How T and r
are completed depends on the end conditions that are imposed on the spline.

3.3.2 The Complete Spline

The complete spline is obtained by setting s1 = µL and sn = µR, where µL and µR are given real values.
With these constraints, setting i = 1 and i = n− 2 in (3.3) gives

∆x2µL + 2(∆x1 + ∆x2)s2 + ∆x1s3 = 3(∆x2y
′
1 + ∆x1y

′
2)

∆xn−1sn−2 + 2(∆xn−2 + ∆xn−1)sn−1 + ∆xn−2µR = 3(∆xn−1y
′
n−2 + ∆xn−2y

′
n−1),

and so the first and last equations are given by

2(∆x1 + ∆x2)s2 + ∆x1s3 = 3(∆x2y
′
1 + ∆x1y

′
2) −∆x2µL

∆xn−1sn−2 + 2(∆xn−2 + ∆xn−1)sn−1 = 3(∆xn−1y
′
n−2 + ∆xn−2y

′
n−1) −∆xn−2µR.

Thus, the setting up of T and r and the resolution of s are completed with the fragment

T(1,1) = 2*(Dx(1) + Dx(2));

T(1,2) = Dx(1);

r(1) = 3*(Dx(2)*yp(1) + Dx(1)*yp(2)) - Dx(2)*muL;

T(n-2,n-2) = 2*(Dx(n-2) + Dx(n-1));

T(n-2,n-3) = Dx(n-1);

r(n-2) = 3*(Dx(n-1)*yp(n-2) + Dx(n-2)*yp(n-1)) - Dx(n-2)*muR;

s = [ muL; T \ r(1:n-2) ; muR];

assuming that muL and muR house µL and µR, respectively.



3.3. CUBIC SPLINES 19

3.3.3 The Natural Spline

Instead of prescribing the slope of the spline at the endpoints, we can prescribe the value of its second
derivative. In particular, if we insist that µL = q′′1 (x1), then from (3.1) it follows that

µL = 2
y′1 − s1

∆x1
− 2

s1 + s2 − 2y′1
∆x1

,

from which we conclude that

s1 =
1

2

(
3y′1 − s2 −

µL

2
∆x1

)
.

Substituting this result into the i = 1 case of (3.3) and rearranging, we obtain

(2∆x1 + 1.5∆x2)s2 + ∆x1s3 = 1.5∆x2y
′
1 + 3∆x1y

′
2 +

µL

4
∆x1∆x2.

Likewise, by setting µR = q′′n−1(xn), then (3.2) implies

µR = 2
y′n−1 − sn−1

∆xn−1
+ 4

sn−1 + sn − 2y′n−1

∆xn−1
,

from which we conclude that

sn =
1

2

(
3y′n−1 − sn−1 +

µR

2
∆xn−1

)
.

Substituting this result into the i = n− 2 case of (3.3) and rearranging we obtain

∆xn−1sn−2 + (1.5∆xn−2 + 2∆xn−1)sn−1 = 3∆xn−1y
′
n−2 + 1.5∆xn−2y

′
n−1 −

µR

4
∆xn−2∆xn−1.

Thus, the setting up of T and r and the resolution of s are completed with the fragment

T(1,1) = 2*Dx(1) + 1.5*Dx(2);

T(1,2) = Dx(1);

r(1) = 1.5*Dx(2)*yp(1) + 3*Dx(1)*yp(2)) + Dx(1)*Dx(2)*muL/4;

T(n-2,n-2) = 1.5*Dx(n-2) + 2*Dx(n-1);

T(n-2,n-3) = Dx(n-1);

r(n-2) = 3*Dx(n-1)*yp(n-2) + 1.5*Dx(n-2)*yp(n-1) -Dx(n-2)*Dx(n-1)*muR;

stilde = T \ r;

s1 = (3*yp(1) - stilde(1) - muL*Dx(1)/2)/2;

sn = (3*yp(n-1) - stilde(n-2) + muR*Dx(n-1)/2)/2;

s = [s1; stilde; sn];

If µL = µR = 0, then the resulting spline is called the natural spline.

3.3.4 The Not-a-Knot Spline

This method for prescribing the end conditions is appropriate if no endpoint derivative information is avail-
able. It produces the not-a-knot spline. The idea is to ensure third derivative continuity at both x2 and
xn−1. Note from (3.1) that

q′′′i (x) = 6
si + si+1 − 2y′i

(∆xi)2
,

and so q′′′1 (x2) = q′′′2 (x2) says that

s1 + s2 − 2y′1
(∆x1)2

=
s2 + s3 − 2y′2

(∆x2)2
.
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It follows that this will be the case if we set

s1 = −s2 + 2y′1 +

(
∆x1

∆x2

)2

, (s2 + s3 − 2y′2).

As a result of making the third derivative continuous at x2, the cubics q1(x) and q2(x) are identical.
Likewise, q′′′n−2(xn−1) = q′′′n−1(xn−1) says that

sn−2 + sn−1 − 2y′n−2

(∆xn−2)2
=

sn−1 + sn − 2y′n−1

(∆xn−1)2
.

It follows that this will be the case if we set

sn = −sn−1 + 2y′n−1 +

(
∆xn−1

∆xn−2

)2

(sn−2 + sn−1 − 2y′n−2).

Thus, the first and last equations for the not-a-knot spline are set up as follows:

q = Dx(1)*Dx(1)/Dx(2);

T(1,1)= 2*Dx(1) +Dx(2) + q;

T(1,2) = Dx(1) + q;

r(1) = Dx(2)*yp(1) + Dx(1)*yp(2)+2*yp(2)*(q+Dx(1));

q= Dx(n-1)*Dx(n-1)/Dx(n-2);

T(n-2,n-2) = 2*Dx(n-1) + Dx(n-2)+q;

T(n-2,n-3) = Dx(n-1)+q;

r(n-2) = Dx(n-1)*yp(n-2) + Dx(n-2)*yp(n-1) +2*yp(n-2)*(Dx(n-1)+q);

stilde = T\ r;

s1 = -stilde(1)+2*yp(1);

s1 = s1 + ((Dx(1)/Dx(2))̂2)*(stilde(1)+stilde(2)-2*yp(2));
sn = -stilde(n-2) +2*yp(n-1);

sn=sn+((Dx(n-1)/Dx(n-2))̂2)*(stilde(n-3)+stilde(n-2)-2*yp(n-2));
s=[s1;stilde;sn];

3.3.5 The Cubic Spline Interpolant

The function CubicSpline can be used to construct the cubic spline interpolant with any of the three
aforementioned types of end conditions. Here is its specification:

function [a,b,c,d] = CubicSpline(x,y,derivative,muL,muR)

% [a,b,c,d] = CubicSpline(x,y,derivative,muL,muR)

% Cubic spline interpolation with prescribed end conditions.

%

% x,y are column n-vectors. It is assumed that n >= 4 and x(1) < ... x(n).

% derivative is an integer (1 or 2) that specifies the order of the endpoint derivatives.

% muL and muR are the endpoint values of this derivative.

%

% a,b,c, and d are column (n-1)-vectors that define the spline S(z). On [x(i),x(i+1)],

%

% S(z) = a(i) + b(i)(z-x(i)) + c(i)(z-x(i))^2 + d(i)(z-x(i))^2(z-x(i+1).

%

% Usage:

% [a,b,c,d] = CubicSpline(x,y,1,muL,muR) S’(x(1)) = muL, S’(x(n)) = muR

% [a,b,c,d] = CubicSpline(x,y,2,muL,muR) S’’(x(1)) = muL, S’’(x(n)) = muR

% [a,b,c,d] = CubicSpline(x,y) S’’’(z) continuous at x(2) and x(n-1)

%
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Notice that a two-argument call is all that is required to produce the not-a-knot spline. The script
ShowSpline examines various CubicSpline interpolants to the sine function.

Error bounds for the cubic spline interpolant are complicated to derive. The bounds are not good if the
end conditions are improperly chosen. Figure 3.6 shows what can happen if the complete spline is used with
end conditions that are at variance with the behavior of the function being interpolated. However, if the
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Figure 3.6 Bad end conditions

end values are properly chosen or if the not-a-knot approach is used, then the error bound has the form
M4h̄

4 where h̄ is the maximum subinterval length and M4 bounds the 4th derivative of the function being
interpolated. The script ShowSplineErr confirms this for the case of an “easy” f(x). It produces the plots
shown in Figure 3.7. Notice that the error is reduced by a factor of 104 if the subinterval length is reduced
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Figure 3.7 Not-a-knot spline error

by a factor of ten.

3.3.6 Matlab Spline Tools

The Matlab function spline can be used to compute not-a-knot spline interpolants. It can be called with
either two or three arguments. The script
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z = linspace(-5,5);

x = linspace(-5,5,9);

y = atan(x);

Svals = spline(x,y,z);

plot(z,Svals);

illustrates a three-argument call. It plots the n = 9 not-a-knot spline interpolant of the function f(x) =
arctan(x) across the interval [−5, 5]. The first two arguments in the call to spline specify the interpolation
points that define the spline S. The spline is then evaluated at z with the values returned in Svals. Thus
S(x(i)) = y(i) for i=1:length(x) and S(z(i)) = Svals(i) for i=1:length(z).

A 2-argument call to spline returns what is called the pp-representation of the spline. This type of
reference is required whenever one has to manipulate the local cubics that make up the spline. The pp-
representation of a spline is different from the four-vector representation that we have been using for piecewise
cubics. For one thing, it is more general because it can accommodate piecewise polynomials of arbitrary
degree.

To gain a facility with Matlab’s piecewise polynomial tools, let’s consider the problem of constructing
the pp-representation of the derivative of a cubic spline S. In particular, let’s plot S′ where S is a nine-point,
equally spaced, not-a-knot spline interpolant of the arctangent function across the interval [−5, 5]. We start
by constructing the pp-representation of S:

x = linspace(-5,5,9);

y = atan(x);

S = spline(x,y)

A two-argument call to spline such as this produces the pp-representation of the spline. The ppval function
can be used to evaluate a piecewise polynomial in this representation:

z = linspace(-5,5);

Svals = ppval(S,z);

plot(z,Svals)

The call to ppval returns the value of the spline at z. The vector Svals contains the values of the spline on
z. These values are then plotted.

The derivative of the spline is a piecewise quadratic polynomial, and by using the functions unmkpp and
mkpp we can produce its pp-representation. A call to unmkpp unveils the four major components of the
pp-representation:

[x,rho,L,k] = unmkpp(S)

The x-values are returned in x. The coefficients of the local polynomials are assembled in an L-by-k matrix
rho. L is the number of local polynomials and k-1 is their degree. So in our case, x = linspace(-5,5,9), L
= 8, and k=4. The coefficients of the i-th local cubic are stored in ith row of the rho matrix. In particular,
the spline is defined by

S(z) = ρi,4 + ρi,3(z − xi) + ρi,2(z − xi)
2 + ρi,1(z − xi)

3

on the interval [xi, xi+1]. Thus, rho(i,j) is the ith local polynomial coefficient of (x− xi)
k−j+1.

The function mkpp takes the breakpoints and the array of coefficients and produces the pp-representation
of the piecewise polynomial so defined. Thus, to set up the pp-representation of the spline’s derivative, we
execute

drho = [3*rho(:,1) 2*rho(:,2) rho(:,3)];

dS = mkpp(x,drho);

The set-up of the three-column matrix drho follows from the observation that

S′(x) = ρi,3 + 2ρi,2(x− xi) + 3ρi,1(x− xi)
2

on the interval [xi, xi+1]. Putting it all together, we obtain
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% Script File: ShowSplineTools

% Illustrates the Matlab functions spline, ppval, mkpp, unmkpp

close all

% Set Up Data:

n = 9;

x = linspace(-5,5,n);

y = atan(x);

% Compute the spline interpolant and its derivative:

S = spline(x,y);

[x,rho,L,k] = unmkpp(S);

drho = [3*rho(:,1) 2*rho(:,2) rho(:,3)];

dS = mkpp(x,drho);

% Evaluate S and dS:

z = linspace(-5,5);

Svals = ppval(S,z);

dSvals = ppval(dS,z);

% Plot:

atanvals = atan(z);

figure

plot(z,atanvals,z,Svals,x,y,’*’);

title(sprintf(’n = %2.0f Spline Interpolant of atan(x)’,n))

datanvals = ones(size(z))./(1 + z.*z);

figure

plot(z,datanvals,z,dSvals)

title(sprintf(’Derivative of n = %2.0f Spline Interpolant of atan(x)’,n))

Problems

P3.3.1 What can you say about the n = 4 not-a-knot spline interpolant of f(x) = x3?

P3.3.2 Suppose S(z) is the not-a-knot spline interpolant of (x1, y1), (x2, y2), (x3, y3), and (x4, y4) where it is assumed that
the xi are distinct. Suppose p(x) is the cubic interpolant at same four points. Explain why S(z) = p(z) for all z.

P3.3.3 Let S(z) be the natural spline interpolant of z3 at z = −3, z = −1, z = 1, z = 3. What is S(0)?

P3.3.4 Given σ > 0, (xi, yi, si), and (xi+1, yi+1, si+1), show how to determine ai, bi, ci, and di so that

gi(x) = ai + bi(x − xi) + cie
σ(x−xi) + die

−σ(x−xi)

satisfies gi(xi) = yi, g′i(xi) = si, gi(xi+1) = yi+1, and g′i(xi+1) = si+1.

P3.3.5 Another approach that can be used to make up for a lack of endpoint derivative information is to glean that information
from a four-point cubic interpolant. For example, if qL(x) is the cubic interpolant of (x1, y1), (x2, y2), (x3, y3), and (x4, y4),
then either of the endpoint conditions

q′1(x1) = q′L(x1)

q′′1 (x1) = q′′L(x1)

is reasonable, where q1(x) is the leftmost local cubic. Likewise, if qR(x) is the cubic interpolant of (xn−3, yn−3), (xn−2, yn−2),
(xn−1, yn−1), and (xn, yn), then either of the right endpoint conditions

q′n−1(xn) = q′R(xn)

q′′n−1(xn) = q′′R(xn)

is reasonable, where qn−1(x) is the rightmost local cubic.
Modify CubicSpline so that it invokes this strategy whenever the function call involves just three arguments, (i.e., [a,b,c,d]

= CubicSpline(x,y,derivative.) The value of derivative should determine which derivative is to be matched at the endpoints.
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(Its value should be 1 or 2.) Augment the script file ShowSpline so that it graphically depicts the splines that are produced by
this method.

P3.3.6 Explain how Matlab’s spline tools can be used to compute

Z β

α
[S′′(x)]2dx,

where S(x) is a cubic spline.

P3.3.7 Suppose S(x) is a cubic spline interpolant of the data (x1, y1), . . . , (xn, yn) obtainedusing spline. Write a Matlab function
d3 = MaxJump(S) that returns the maximum jump in the third derivative of the spline S assumed to be in the pp-representation.
Vectorize as much as possible. Use the max function.

P3.3.8 Write a Matlab function S = Convert(a,b,c,d,x) that takes our piecewise cubic interpolant representation and con-
verts it into pp form.

P3.3.9 Complete the following function:

function [a,b,c,d] = SmallSpline(z,y)

% z is a scalar and y is 3-vector.

% a,b,c,d are column 2-vectors with the property that if

%

% S(x) = a(1) + b(1)(x - z) + c(1)(x - z)^2 + d(1)(x - z)^3 on [z-1,z]

% and

% S(x) = a(2) + b(2)(x - z) + c(2)(x - z)^2 + d(2)(x - z)^3 on [z,z+1]

% then

% (a) S(z-1) = y(1), S(z) = y(2), S(z+1) = y(3),

% (b) S’’(z-1) = S’’(z+1) = 0

% (c) S, S’, and S’’ are continuous on [z-1,z+1]

%

P3.3.10 In computerized typography the problem arises of finding an interpolant to points that lie on a path in the plane (e.g.,
a printed capital S). Such a shape cannot be represented as a function of x because it is not single valued. One approach is
to number the points (x1, y1), . . . , (xn, yn) as we traverse the curve. Let di be the straight-line distance between (xi, yi) and
(xi+1, yi+1), i = 1:n − 1. Set ti = d1 + · · · + di−1, i = 1:n. Suppose Sx(t) is a spline interpolant of (t1, x1), . . . , (tn, xn) and
that Sy (t) is a spline interpolant of (t1, y1), . . . , (tn, yn).

It follows that the curve Λ = {(Sx(t), Sy(t)) : t1 ≤ t ≤ tn} is smooth and passes through the n points. Write a
Matlab function [xi,yi] = SplineInPlane(x,y,m) that returns in xi(1:m) and yi(1:m) the x-y coordinates of m points
on the curve Λ. Use the Matlab Spline function to determine the splines Sx(t) and Sy(t).

To test SplineInPlane write a script that solicits an arbitrary number of points from the plot window using ginput. It
should echo your mouseclicks by placing an asterisk at each point. After all the points are acquired it should compute the
splines Sx and Sy defined above and then plot the curve Λ. Use hold on so that the asterisks are also displayed.

Submit listings and sample output showing a personally designed letter “S”. The number of input points used is up to you.

P3.3.11 Let S(x) be the not-a-knot cubic spline interpolant of (0,0), (1,1), (2,8), (3,27). Explain why S(3/2) = (3/2)3.

P3.3.12 Suppose x and y are column n-vectors with x1 < x2 < · · · < xn. If z is a column m-vector, then sval = spline(x,y,z)

is a column m-vector with the property that sval(i) = S(zi), where S the not-a-knot spline interpolant of (x1, y1), . . . , (xn, yn).

Let
S1(x) be the not-a-knot spline interpolant of sin(x) at xi = (i − 1)/10, i = 1:21

S2(x) be the not-a-knot spline interpolant of exp(x) at xi = (i − 1)/10, i = 1:21

S3(x) be the not-a-knot spline interpolant of sin(x) · exp(x) at xi = (i − 1)/10, i = 1:21

S4(x) be the not-a-knot spline interpolant of 2 sin(x) + 3 exp(x) at xi = (i − 1)/10, i = 1:21

Write a vectorized Matlab script that plots in a single window these four splines across the interval [0,2]. The plots
should be based on one-hundred, equally-spaced evaluations. Avoid unnecessary function calls. You do not have to exploit any
trigonometric or exponential identities.

P3.3.13 Produce a plot that shows that it is a bad idea to interpolate with the natural spline if the second derivative of the
underlying function is not zero at the endpoints.

P3.3.14 Suppose f(t) and its first two derivatives are defined everywhere. If f has period T (positive), then f(t + T ) = f(t)
for all t. Consider the problem of interpolating such a function on an interval [τ, τ + T ] with a spline S having breakpoints

τ = t1 < · · · < tn = τ + T.
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It makes sense to require

S′(τ ) = S′(τ + T )

S′′(τ ) = S′′(τ + T ),

since f ′(τ ) = f ′(τ + T ) and f ′′(τ ) = f ′′(τ + T ). Moreover, we can then extend S periodically off the “base” interval [τ, τ + T ]
and obtain a piecewise cubic interpolant that is continuous through the second derivative. (a) Modify CubicSpline so that a
3-argument call of the form

[a,b,c,d] = CubicSpline(x,y,0)

produces the periodic spline interpolant. In other words,

S(xi) = yi

S′(x1) = S′(xn)

S′′(x1) = S′′(xn)

where i = 1:n and n is the length of x. Test your adaptation with the function

f(x) = sin(2πx) − .3 · cos(4πx) + .6 · sin(6πx) + .2 · cos(8πx)

by generating its periodic spline interpolant on linspace(0,1,15). Print a table of the coefficients a(1:14), b(1:14), c(1:14), and
d(1:14) and plot both f and the spline across [0, 1]. (b) A not-a-knot spline interpolant of f across [τ, τ + T ] will in general
not be periodic. However, we can make it “almost” periodic by choosing t2 = t1 + δ and tn−1 = tn − δ for small δ. Write a
function

function s = Periodic(f,t1,T,n,del)

% f is a handle that references an available function f(t) that has period T and is defined

% everywhere. t1 is a real scalar, n is an integer >= 4, and del a positive scalar that

% satisfies del < T/2.

%

% s is the pp-form of the not-a-knot spline that interpolates f at t(1),...,t(n) where

%

% t1 if k=1

% t1 + del if k=2

% t(k) = t1 + del + (k-2)*(T-2*del)/(n-3) if k=3:n-2

% t1 + T-del if k=n-1

% t1 + T if k=n

%

% A four-parameter reference of the form s = Periodic(f,t1,T,n) should

% return the not-a-knot spline interpolant of f at linspace(t1,t1+T,n).

M-Files and References

Script Files

ShowpwL1 Illustrates pwL and pwLeval.
ShowpwL2 Compares pwLstatic and pwLadapt.
ShowHermite Illustrates the Hermite interpolation idea.
ShowpwC Illustrates pwC and pwCeval.
ShowSpline Illustrates CubicSpline.
ShowSplineErr Explores the not-a-knot spline interpolant error.
ShowMatSplineTools Illustrates Matlab spline tools.
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Function Files

Locate Determines the subinterval in a mesh that houses a given x-value
pwL Sets up a piecewise linear interpolant.
pwLeval Evaluates a piecewise linear function.
pwLstatic A priori determination of a mesh for a pwL approximation.
pwLadapt Dynamic determination of a mesh for a pwL approximation.
HCubic Constructs the cubic Hermite interpolant.
pwC Sets up a piecewise cubic Hermite interpolant.
pwCeval Evaluates a piecewise cubic function.
CubicSpline Constructs complete, natural, or not-a-knot spline.

References

R. Bartels, J. Beatty, and B. Barsky (1987). An Introduction to Splines for Use in Computer Graphics and
Geometric Modeling, Morgan Kaufmann, Los Altos, CA.

C. de Boor (1978). A Practical Guide to Splines, Springer, Berlin.



Chapter 4

Numerical Integration

§1 The Newton-Cotes Rules

§2 Composite Rules

§3 Adaptive Quadrature

§4 Gauss Quadrature and Spline Quadrature

§5 Matlab’s Quadrature Tools

An m-point quadrature rule Q for the definite integral

I(f, a, b) =

∫ b

a

f(x)dx (4.1)

is an approximation of the form

IQ(f, a, b) = (b− a)

m∑

k=1

wkf(xk). (4.2)

The xk are the abscissas and the wk are the weights. The abscissas and weights define the rule and are chosen
so that IQ(f, a, b) ≈ I(f, a, b). Efficiency essentially depends upon the number of function evaluations. This
is because the time needed to evaluate f at the xi is typically much greater than the time needed to form
the required linear combination of function values. Thus, a six-point quadrature rule is twice as expensive
as a three-point rule.

We start by presenting the the Newton-Cotes family of quadrature rules. These rules are derived by
integrating a polynomial interpolant of the integrand f(x). Composite rules based on a partition of [a, b]
into subintervals are then discussed in §4.2. In a composite rule, a simple rule is applied to each subintegral
and the result summed. The adaptive determination of the partition with error control is presented in §4.3.
The partition is determined recursively using heuristic estimates of the integrand’s behavior. In §4.4 we
discuss the “super accuracte” Gauss quadrature idea and also how to approach the quadrature problem
using splines when the integrand is only known through a discrete set of sample points.

4.1 The Newton-Cotes Rules

One way to derive a quadrature rule Q is to integrate a polynomial approximation p(x) of the integrand
f(x). The philosophy is that p(x) ≈ f(x) implies

1
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∫ b

a

f(x)dx ≈
∫ b

a

p(x)dx.

(See Figure 4.1.) The Newton-Cotes quadrature rules are obtained by integrating uniformly spaced polyno-
mial interpolants of the integrand. The m-point Newton-Cotes rule (m ≥ 2) is defined by

QNC(m) =

∫ b

a

pm−1(x)dx, (4.3)
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Figure 4.1 The Newton-Cotes idea

where pm−1(x) interpolates f(x) at

xi = a +
i− 1

m− 1
(b− a), i = 1:m.

If m = 2, then we obtain the trapezoidal rule:

QNC(2) =

∫ b

a

(
f(a) +

f(b) − f(a)

b− a
(x− a)

)
dx

= (b− a)

(
1

2
f(a) +

1

2
f(b)

)
.

If m = 3 and c = (a + b)/2, then we obtain the Simpson rule:

QNC(3) =

∫ b

a



f(a) +
f(c) − f(a)

c− a
(x− a) +

f(b) − f(c)
b− c

− f(c) − f(a)
c− a

b− a
(x− a)(x− c)



dx

=
b− a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)
.

From these low-degree examples, it appears that a linear combination of f-evaluations is obtained upon
expansion of the right-hand side in (4.3).
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4.1.1 Derivation

For general m, we proceed by substituting the Newton representation

pm−1(x) =

m∑

k=1

(
ck

k−1∏

i=1

(x− xi)

)

into (4.3):

QNC(m) =

∫ b

a

pm−1(x)dx =

m∑

k=1

ck

∫ b

a

(
k−1∏

i=1

(x− xi)

)
dx.

If we set x = a + sh, where h = (b− a)/(m− 1), then this transforms to

QNC(m) =

∫ b

a

pm−1(x)dx = h

∫ m−1

0

pm−1(a + sh)ds =

m∑

k=1

ckhkSmk,

where

Smk =

∫ m−1

0

(
k−1∏

i=1

(s− i + 1)

)
ds.

The ck are divided differences. Because of the equal spacing, they have a particularly simple form in terms
of the fi, as was shown in §2.4.1. For example,

c1 = f1

c2 = (f2 − f1)/h

c3 = (f3 − 2f2 + f1)/(2h2)

c4 = (f4 − 3f3 + 3f2 − f1)/(3!h3).

Recipes for the Smk can also be derived. Here are a few examples:

Sm1 =
∫m−1

0
1 · ds = (m− 1)

Sm2 =
∫m−1

0 sds = (m− 1)2/2

Sm3 =
∫m−1

0
s(s− 1)ds = (m− 1)2(m− 5/2)/3

Sm4 =
∫m−1

0
s(s− 1)(s− 2)ds = (m− 1)2(m− 3)2/4

Using these tabulations we can readily derive the weights for any particular m-point rule. For example, if
m = 4, then

S41 = 3 S42 = 9/2 S43 = 9/2 S44 = 9/4.

Thus,

QNC(4) = S41c1h + S42c2h
2 + S43c3h

3 + S44c4h
4

= 3f1h +
9

2

f2 − f1

h
h2 +

9

2

f3 − 2f2 + f1

2h2
h3 +

9

4

f4 − 3f3 + 3f2 − f1

6h3
h4

=
3h

8
(f1 + 3f2 + 3f3 + f4)

= (b− a)(f1 + 3f2 + 3f3 + f4)/8

showing that [1 3 3 1]/8 is the weight vector for QNC(4).
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4.1.2 Implementation

For convenience in subsequent computations, we “package” the Newton-Cotes weight vectors in the following
function:

function w = NCWeights(m)

% w = NCWeights(m)

%

% w is a column m-vector consisting of the weights for the m-point Newton-Cotes rule.

% m is an integer that satisfies 2 <= m <= 11.

if m==2

w=[1 1]’/2;

elseif m==3

w=[1 4 1]’/6;

elseif m==4

w=[1 3 3 1]’/8;

elseif m==5

w=[7 32 12 32 7]’/90;

:

end

Notice that the weight vectors are symmetric about their middle in that w(1:m) = w(m: − 1:1).

Turning now to the evaluation of QNC(m) itself, we see from

QNC(m) = (b− a)

m∑

i=1

wifi = (b− a)
[

w1 · · · wm

]



f(x1)

...
f(xm)





that it is a scaled inner product of the weight vector w and the vector of function values. Therefore, we
obtain

function numI = QNC(f,a,b,m)

% m-point Newton-Cotes quadrature across the interval [a b].

% f is a handle that points to a function of the form f(x) where x is a

% scalar. f must be defined on [a,b] and it must return a column vector if

% x is a column vector.

% m is an integer that satisfies 2 <= m <= 11.

% numI is the m-point Newton-Cotes approximation of the integral of f from

% a to b.

w = NCweights(m);

x = linspace(a,b,m)’;

fvals = f(x);

numI = (b-a)*(w’*fvals);

We mention that QNC(2) and QNC(3) are referred to as the trapezoidal rule and Simpson’s rule respectively.

Let us see how well QNC does when it is applied to the problems

I1 =

∫ 1

0

e−xdx = 1− e−1

and

I2 =

∫ 1

0

e−20xdx = (1− e−20)/20

Setting Q1 = QNC(@(x) exp(-x),0,1,m) and Q2 = QNC(@(x) exp(-20*x),0,1,m) we find
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m |Q1 - I1| |Q2 - I2|

-----------------------------------------------

2 0.0518191617571635 0.4500000011336345

3 0.0002131211751050 0.1166969337330916

4 0.0000950324202655 0.0754778453850014

5 0.0000003161797660 0.0301796546189490

6 0.0000001782491539 0.0208012561376684

7 0.0000000003894651 0.0080385105198381

8 0.0000000002389524 0.0056365811921616

9 0.0000000000003593 0.0019118765020265

10 0.0000000000002303 0.0013508599157407

11 0.0000000000000003 0.0003884845483225

We need a theory that explains why the results for I2 are so inferior!

4.1.3 Newton-Cotes Error

How good are the Newton-Cotes rules? Since they are based on the integration of a polynomial interpolant,
the answer clearly depends on the quality of the interpolant. Here is a result for Simpson’s rule:

Theorem 4 If f(x) and its first four derivatives are continuous on [a, b], then
∣∣∣∣∣

∫ b

a

f(x)dx−QNC(3)

∣∣∣∣∣ ≤
(b − a)5

2880
M4,

where M4 is an upper bound on |f(4)(x)| on [a, b].

Proof Suppose

p(x) = c1 + c2(x− a) + c3(x− a)(x − b) + c4(x− a)(x− b)(x− c)

is the Newton form of the cubic interpolant to f(x) at the points a, b, c, and d. If c is the midpoint of the
interval [a, b], then ∫ b

a

(c1 + c2(x − a) + c3(x − a)(x− b)) dx = QNC(3),

because the first three terms in the expression for p(x) specify the quadratic interpolant of (a, f(a)), (c, f(c)),
and (b, f(b)), on which the three-point Newton-Cotes rule is based. By symmetry we have

∫ b

a

(x− a)(x− b)(x− c)dx = 0

and so ∫ b

a

p(x)dx = QNC(3).

The error in p(x) is given by Theorem 2,

f(x) − p(x) =
f(4)(ηx)

24
(x− a)(x− b)(x− c)(x− d)

and thus, ∫ b

a

f(x)dx −QNC(3) =

∫ b

a

(
f(4)(ηx)

24
(x− a)(x− b)(x− c)(x− d)

)
dx.

Taking absolute values, we obtain
∣∣∣∣∣

∫ b

a

f(x)dx−QNC(3)

∣∣∣∣∣ ≤
M4

24

∫ b

a

|(x− a)(x − b)(x− c)(x− d)| dx.
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If we set d = c, then (x− a)(x− b)(x− c)(x− d) is always negative and it is easy to verify that

∫ b

a

|(x− a)(x− b)(x− c)(x− d)| dx =
(b − a)5

120

and so ∣∣∣∣∣

∫ b

a

f(x)dx−QNC(3)

∣∣∣∣∣ ≤
M4

24

(b− a)5

120
=

M4

2880
(b− a)5. �

Note that if f(x) is a cubic polynomial, then f(4) = 0 and so Simpson’s rule is exact. This is somewhat
surprising because the rule is based on the integration of a quadratic interpolant.

In general, it can be shown that

∫ b

a

f(x)dx = QNC(m) + cmf(d+1)(η)

(
b− a

m− 1

)d+2

, (4.4)

where cm is a small constant, η is in the interval [a, b], and

d =

{
m− 1 if m is even

m if m is odd
.

Notice that if m is odd, as in Simpson’s rule, then an extra degree of accuracy results. See P4.1.3 for details.
From (4.4), we see that knowledge of f(d+1) is required in order to say something about the error in

QNC(m). For example, if |f(d+1)(x)| ≤Md+1 on [a, b], then

∣∣∣∣∣QNC(m) −
∫ b

a

f(x)dx

∣∣∣∣∣ ≤ |cm|Md+1

(
b− a

m− 1

)d+2

. (4.5)

The following function can be used to return this upper bound given the interval [a, b], m, and the appropriate
derivative bound:

function error = QNCError(a,b,m,M)

% The error bound for the m-point Newton-Cotes rule when applied to

% the integral from a to b of a function f(x). It is assumed that

% a<=b and 2<=m<=11. M is an upper bound for the (d+1)-st derivative of the

% function f(x) on [a,b] where d = m if m is odd, and m-1 if m is even.

if m==2, d=1; c = -1/12;

elseif m==3, d=3; c = -1/90;

elseif m==4, d=3; c = -3/80;

elseif m==5, d=5; c = -8/945;

elseif m==6, d=5; c = -275/12096;

elseif m==7, d=7; c = -9/1400;

elseif m==8, d=7; c = -8183/518400;

elseif m==9, d=9; c = -2368/467775;

elseif m==10, d=9; c = -173/14620;

else d=11; c = -1346350/326918592;

end

error = abs( c*M*((b-a)/(m-1))^(d+2));

From this we see that if you are contemplating an even m rule, then the (m−1)-point rule is probably just as
good and requires one less function evaluation. The following table summarizes the error when the m-point
Newton-Cotes rule is applied to

I =

∫ π/2

0

sin(x)dx.
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m QNC(@sin,0,pi/2,m) Actual Error Error Bound

2 0.7853981633974483 2.146e-01 3.230e-01

3 1.0022798774922104 2.280e-03 3.321e-03

4 1.0010049233142790 1.005e-03 1.476e-03

5 0.9999915654729927 8.435e-06 1.219e-05

6 0.9999952613861667 4.739e-06 6.867e-06

7 1.0000000258372355 2.584e-08 3.714e-08

8 1.0000000158229039 1.582e-08 2.277e-08

9 0.9999999999408976 5.910e-11 8.466e-11

10 0.9999999999621675 3.783e-11 5.417e-11

11 1.0000000000001021 1.021e-13 1.460e-13

Problems

P4.1.1 Let C(x) be the cubic Hermite interpolant of f(x) at x = a and b. Show that

Z b

a
C(x)dx =

h

2
(f(a) + f(b)) +

h2

12
(f ′(a) − f ′(b)).

This is sometimes called the corrected trapezoidal rule. Write a function CorrTrap(f,fp,a,b) that computes this value. Here,
f and fp are handles that reference the integrand and its derivative respectively. The error in this rule has the form ch4f (4)(η).
Determine c (approximately) through experimentation.

P4.1.2 This problem is about the computation of the closed Newton-Cotes weights by solving an appropriate linear system.
Observe that the m-point rule should compute the integral

Z 1

0
xi−1dx =

1

i

exactly for i = 1:m. For this calculation, the abscissas are given by xj = (j−1)/(m−1), i = 1:m. Thus the weights w1, . . . ,wm

satisfy

w1xi−1
1 + w2xi−1

2 + · · · + wmxi−1
m =

1

i

for i = 1:m. This defines a linear system whose solution is the weight vector for the m-point rule. Write a function
MyNCweights(m) that computes the weights by setting up the preceding linear system and solving for w using the backslash
operation. Compare the output of NCweights and MyNCweights for m = 2:11.

P4.1.3 (a) Suppose m is odd and that c = (a + b)/2. Show that QNC(m) is exact if applied to

I =

Z b

a
(x − c)kdx

when k is odd. (b) If p(x) has degree m, then it can be written in the form p(x) = q(x) + α(x− c)m where q has degree m − 1
and α is a scalar. Use this fact with c = (a + b)/2 to show that if m is odd, then QNC(m) is exact when applied to

I =

Z b

a
p(x)dx.

P4.1.4 Augment ShowQNCError so that it also prints a table of errors and error bounds for the integral

I =

Z 1

0

dx

1 + 10x
.

Explain clearly the derivative bounds that are used.

4.2 Composite Rules

We will not be happy with the error bound (4.5) unless b − a is sufficiently small. Fortunately, there is an
easy way to organize the computation of an integral so that small-interval quadratures prevail.
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d t t t d t t t d t t t d t t t d
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︸ ︷︷ ︸
∆
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∆

︸ ︷︷ ︸
∆

Figure 4.2 Function evaluations in Q
(4)
NC(5)

4.2.1 Derivation

If we have a partition
a = z1 < z2 < · · · < zn+1 = b,

then ∫ b

a

f(x)dx =

n∑

i=1

∫ zi+1

zi

f(x)dx.

If we apply QNC(m) to each of the subintegrals, then a composite quadrature rule based on QNC(m) results.
For example, if ∆i = zi+1 − zi and zi+1/2 = (zi + zi+1)/2, i = 1:n, then

Q =
n∑

i=1

∆i

6

(
f(zi) + 4f(zi+1/2) + f(zi+1)

)
(4.6)

is a composite Simpson rule. In general, if z houses a partition of [a, b] and f is a handle that references a
function, then

numI=0

for i=1:length(z)-1

numI = numI + QNC(@f,z(i),z(i+1),m);

end

assigns to numI the composite m-point Newton-Cotes estimate of the integral based on the partition housed
in z.

In §4.4 we will show how to automate the choice of a good partition. In the remainder of this section,
we focus on composite rules that are based on uniform partitions. In these rules, n ≥ 1,

zi = a + (i− 1)∆, ∆ =
b− a

n

for i = 1:n + 1, and the composite rule evaluation has the form

numI = 0;

Delta=(b-a)/n;

for i=1:n

numI = numI + QNC(@f,a+(i-1)*Delta,a+i*Delta,m);

end

We designate the estimate produced by this quadrature rule by Q
(n)
NC(m). The computation is a little inefficient

because it involves n− 1 extra function evaluations and a for-loop. The rightmost f-evaluation in the ith
call to QNC is the same as the leftmost f-evaluation in the i+1st call. Figure 4.2 depicts the situation in the
four-subinterval, five-point rule case.

To avoid redundant f-evaluation and a for-loop with repeated function calls, it is better not to apply
QNC to each of the n subintegrals. Instead, we precompute all the required function evaluations and store
them in a single column vector fval(1:n(m-1)+1). The linear combination that defines the composite rule

is then calculated. In the preceding Q
(4)
NC(5) example, the 17 required function evaluations are assembled in

fval(1:17). If w is the weight vector for QNC(5), then

Q
(4)
NC(5) = ∆

(
wT fval(1:5) + wT fval(5:9) + wT fval(9:13) + wT fval(13:17)

)
.



4.2. COMPOSITE RULES 9

From this we conclude that Q
(n)
NC(m) is a summation of n inner products, each of which involves the weight

vector w of the underlying rule and a portion of the fval-vector. The following function is organized around
this principle:

function numI = CompQNC(f,a,b,m,n)

% Composite Newton-Cotes rule for the integral of f from a to b.

% f is a handle that points to a function of the form f(x) where x is a

% scalar. f must be defined on [a,b] and it must return a column vector if x is a

% column vector.

% m is an integer that satisfies 2 <= m <= 11.

% n is a positive integer.

% numI is the composite m-point Newton-Cotes approximation of the integral of f

% from a to b with n equal length subintervals.

w = NCweights(m);

x = linspace(a,b,n*(m-1)+1)’;

f = f(x);

numI = 0; first = 1; last = m;

for i=1:n

%Add in the inner product for the i-th subintegral.

numI = numI + w’*f(first:last);

first = last;

last = last+m-1;

end

numI = Delta*numI;

4.2.2 Error

Let us examine the error. Suppose Qi is the m-point Newton-Cotes estimate of the ith subintegral. If this
rule is exact for polynomials of degree d, then using (4.4) we obtain

∫ b

a

f(x)dx =

n∑

i=1

∫ zi+1

zi

f(x)dx =

n∑

i=1

(
Qi + cmf(d+1)(ηi)

(
zi+1 − zi

m− 1

)d+2
)

.

By definition

Q
(n)
NC(m) =

n∑

i=1

Qi

and

zi+1 − zi = ∆ =
b− a

n
.

Moreover, it can be shown that

1

n

n∑

i=1

f(d+1)(ηi) = f(d+1)(η)

for some η ∈ [a, b] and so

∫ b

a

f(x)dx = Q
(n)
NC(m) + cm

(
b− a

n(m− 1)

)d+2

nf(d+1)(η). (4.7)

If |f(d+1)(x)| ≤Md+1 for all x ∈ [a, b], then

∣∣∣∣∣Q
(n)
NC(m) −

∫ b

a

f(x)dx

∣∣∣∣∣ ≤
[
|cm|Md+1

(
b− a

m− 1

)d+2
]

1

nd+1
. (4.8)

Comparing with (4.5), we see that the error in the composite rule is the error in the corresponding “simple”
rule divided by nd+1 . Thus, with m fixed it is possible to exercise error control by choosing n sufficiently
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large. For example, suppose that we want to approximate the integral with a uniformly spaced composite
Simpson rule so that the error is less than a prescribed tolerance tol. If we know that the fourth derivative
of f is bounded by M4, then we choose n so that

1

90
M4

(
b− a

2

)5
1

n4
≤ tol.

To keep the number of function evaluations as small as possible, n should be the smallest positive integer
that satisfies

n ≥ (b− a)
4

√
M4(b− a)

2880 · tol .

The script file ShowCompQNC displays the error properties of the composite Newton-Cotes rules for three
different integrands. (See Figure 4.3.)
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Figure 4.3 Error in composite Newton-Cotes rules

Problems

P4.2.1 Write a function error = CompQNCerror(a,b,m,DerBound,n) that returns an upper bound for the error in the uniformly
spaced composite m-point Newton-Cotes quadrature rule applied to the integral of f(x) from a to b. Use errNC.

P4.2.2 Rewrite CompQNC so that only one call to the integrand function is required.

P4.2.3 Write a function: n = nBest(a,b,m,DerBound,tol) that returns an integer n such that the error bound for Q
(n)
NC(m) is

less than tol.

P4.2.4 Let C(x) be the piecewise cubic Hermite interpolant of of f(x) on [a, b]. Develop a uniformly spaced composite rule
based on this interpolant.

P4.2.5 What can you say about the approximate value of T2/T1, where T1 is the time required to compute a certain integral
using a composite m-point Newton-Cotes rule with n subintervals, and T2 is the time required to compute the same integral
using a composite 2m-point Newton-Cotes rule with 10n subintervals.

4.3 Adaptive Quadrature

Uniformly spaced composite rules that are exact for degree d polynomials are efficient if f(d+1) is uniformly
behaved across [a, b]. However, if the magnitude of this derivative varies widely across the interval of
integration, then the error control process discussed in §4.2 may result in an unnecessary number of function
evaluations. This is because n is determined by an interval-wide derivative bound Md+1 . In regions where
f(d+1) is small compared to this value, the subintervals are (possibly) much shorter than necessary. Adaptive
quadrature methods address this problem by “discovering” where the integrand is ill behaved and shortening
the subintervals accordingly.
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4.3.1 An Adaptive Newton-Cotes Procedure

To obtain a good partition of [a, b], we need to be able to estimate error. That way the partition can be
refined if the error is not small enough. One idea is to use two different quadrature rules. The difference
between the two predicted values of the integral could be taken as a measure of their inaccuracy:

function numI = AdaptQNC(f,a,b,...)

Compute the integral from a to b in two ways. Call the values A1 and A2

and assume that A2 is better.

Estimate the error in A2 based on |A1 − A2|.
If the error is sufficiently small, then

numI = A2;

else

mid = (a+b)/2;

numI = AdaptQNC(f,a,mid,...) + AdaptQNC(f,mid,b,...);

end

This divide-and-conquer framework is similar to the one we developed for adaptive piecewise linear approx-
imation.

The filling in of the details begins with the development of a method for estimating the error. Fix m and

set A1 = Q
(1)
NC(m) and A2 = Q

(2)
NC(m). Thus A1 is the “simple” m-point rule estimate and A2 is the two-interval,

m-point rule estimate. If these rules are exact for degree d polynomials, then it can be shown that

I = A1 +

[
cmf(d+1)(η1)

(
b− a

m− 1

)d+2
]

(4.9)

I = A2 +

[
cmf(d+1)(η2)

(
b− a

m− 1

)d+2
]

1

2d+1
(4.10)

where η1 and η2 are in the interval [a, b]. We now make the assumption f(d+1)(η1) = f(d+1)(η2). This is
reasonable if f(d+1) does not vary much on [a, b]. (The shorter the interval, the more likely this is to be the
case.) Thus

I = A1 + C

and

I = A2 + C/2d+1,

where

C =

[
cmf(d+1)(η1)

(
b− a

m− 1

)d+2
]

.

By subtracting these two equations for I from each other and solving for C, we get

C =
A2 −A1

1− 1
2d+1

and so

|I − A2| ≈
|A1 −A2|
2d+1 − 1

.

Thus, the discrepancy between the two estimates divided by 2d+1 − 1 provides a reasonable estimate of the
error in A2. If our goal is to produce an estimate of I that has absolute error tol or less, then the recursion
may be organized as follows:
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function numI = AdaptQNC(f,a,b,m,tol)

% f is a handle that points to a function of the form f(x) where x is a

% scalar. f must be defined on [a,b] and it must return a column vector if x is a

% column vector.

% a,b are real scalars, m is an integer that satisfies 2 <= m <=11, and

% tol is a positive real.

% numI is a composite m-point Newton-Cotes approximation of the

% integral of f(x) from a to b, where the subinterval partition is

% determined adaptively.

% Estimates based on composite rule with 1 and 2 subintervals...

A1 = CompQNC(f,a,b,m,1);

A2 = CompQNC(f,a,b,m,2);

% The error estimate...

d = 2*floor((m-1)/2)+1;

error = (A2-A1)/(2^(d+1)-1);

% Accept of reject A2?

if abs(error) <= tol

% A2 is acceptable

numI = A2+error;

else

% Subdivide the problem...

mid = (a+b)/2;

numI = AdaptQNC(f,a,mid,m,tol/2) + AdaptQNC(f,mid,b,m,tol/2);

end

If the heuristic estimate of the error is greater than tol, then two recursive calls are initiated to obtain
estimates

QL ≈
∫ mid

a

f(x)dx = IL

and

QR ≈
∫ b

mid

f(x)dx = IR

that satisfy

|IL −QL| ≤ tol/2

and
|IR −QR| ≤ tol/2.

Setting Q = QL + QR, we see that

|I −Q| = |(IL −QL) + (IR −QR)| ≤ |IL −QL|+ |IR −QR| ≤ (tol/2) + (tol/2) = tol.

Insight into the economies that are realized by the adaptive framework can be obtained by applying
AdaptQNC to the integral of the built-in function

humps(x) =
1

0.01 + (x − 0.3)2
+

1

0.04 + (x− 0.9)2
− 6

from 0 to 1. The tables in Figure 4.4 and Figure 4.5 report on the number of required function evaluations
associated with the call AdaptQNC(@humps,0,1,m,tol) for various choices of m and tol. These values would
be much higher if we used CompQNC(f,a,b,m,n) to attain the same level of accuracy. This is because higher
derivatives of humps are modest in size except near x = .3 and x = .9. To handle these “rough spots” we
would need a large number of subintervals, i.e., a large value for n in the call to CompQNC.
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m = 3 m = 5 m = 7 m = 9

tol = .01 26 14 6 2

tol = .001 54 22 6 2

tol = .0001 94 30 14 10

tol = .00001 174 46 26 14

Figure 4.4 Number of Scalar f-evaluations required by QNC(@humps,0,1,m,tol)

m = 3 m = 5 m = 7 m = 9

tol = .01 104 98 60 26

tol = .001 216 154 60 26

tol = .0001 376 210 140 130

tol = .00001 696 322 260 182

Figure 4.5 Number of Vector f-evaluations required by QNC(@humps,0,1,m,tol)

Problems

P4.3.1 The one-panel midpoint rule Q1 for the integral

I =

Z b

a
f(x)dx

is defined by

Q1 = (b − a)f

„

a + b

2

«

.

The two-panel midpoint rule Q2 for I is given by

Q2 =
b − a

2

„

f

„

3a + b

4

«

+ f

„

a + 3b

4

««

.

Using the heuristic |I−Q2| ≤ |Q2−Q1|, write an efficient Matlab adaptive quadratureroutine of the form Adapt(f,a,b,tol,...)

that returns an estimate of I that is accurate to within the tolerance given by tol. You may extend the parameter list, and you
may use nargin as required. You may ignore the possibility of infinite recursion.

P4.3.2 A number of efficiency improvements can be made to AdaptQNC. A casual glance at AdaptQNC reveals two sources
of redundant function evaluations: First, each function evaluation required in the assignment to A1 is also required in the
assignment to A2. Second, the recursive calls could (but do not) make use of previous function evaluations. In addressing these
deficiencies, you are to follow these ground rules:

• A call of the form AdaptQNC1(@f,a,b,m,tol)must produce the same value as a call of the form AdaptQNC(@f,a,b,m,tol).

• No global variables are allowed.

To “transmit” appropriate function values in the recursive calls, you will want to design AdaptQNC1 so that it has an “optional”
sixth argument fValues. By making this argument optional, the same five-parameter calls at the top level are permitted.

P4.3.3 An implementation y = MyF(x) of the function f(x) has the property that it returns f(xi) in yi for i = 1:n where n is
the length of x. Assume that the cost of a MyF evaluation is constant and independent of the length of the input vector x. We
want to compute

I =

Z b

a
f(x)dx

with specified accuracy. Explain why it might be more efficient to use a composite trapezoidal rule with uniform length
subintervals than an adaptive trapezoidal rule if we have information about the second derivative of f .

P4.3.4 Assume that MyF is a given implementation of the function f(x) and that f has positive period T . Write an efficient
Matlab script for computing the integral

I =

Z b

a
f(x)dx

with absolute error ≤ 10−6. Assume that a and b are given and make effective use of the Matlab quadrature function quad.
The absolute error is no bigger than tol.
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P4.3.5 Let Qn be the equal spacing composite trapezoidal rule:

Qn = h

„

1

2
f(x1) + f(x2) + · · · + f(xn−1) +

1

2
f(xn)

«

h =
b − a

n − 1
,

where x = linspace(a, b, n) and we assume that n ≥ 2. Assume that there is a constant C (independent of n), such that

I =

Z b

a
f(x)fx = Qn + Ch2.

(a) Give an expression for |I − Q2n| in terms of |Q2n − Qn|. (b) Write an efficient function Q = TrapRecur(f,a,b,tol that
returns in Q the value of Q2k+1 , where k is the smallest positive integer so that |I − Q2k+1 | is smaller than the given positive
tolerance tol.

P4.3.6 Assume that the function f(x) is available and define

φ(z) =

Z z

−z
f(x)dx.

Using quad, show how to compute an array phiVals(1:100) with the property that φ(k) is assigned to phiVals(k) for k=1:100.

P4.3.7 Give a solution procedure for computing

I =

Z b

a

„Z x

a
f(x, y)dy

«

dx,

where f(x,y) is a given. All integrals in your method must be computed using quad. Clearly define the functions that are
required by your method. Note: The built-in Matlab function dblquad can be used to evaluate double integrals of the form

I =

Z b

a

Z d

c
f(x, y)dxdy,

but this does not help in this problem.

4.4 Gauss Quadrature and Spline Quadrature

We discuss two other approaches to the quadrature problem. Gauss quadrature rules are of great interest
because they optimize accuracy for a given number of f-evaluations. They also have merit in certain prob-
lems where the integrand has singularities. In situations where the function evaluations are experimentally
determined, spline quadrature has a certain appeal.

4.4.1 Gauss Quadrature

In the Newton-Cotes framework, the integrand is sampled at regular intervals across [a, b]. In the Gauss
quadrature framework, the abscissas are positioned in such a way that the rule is correct for polynomials of
maximal degree.

A simple example clarifies the main idea. Let us try to determine weights w1 and w2 and abscissas x1

and x2 so that

w1f(x1) + w2f(x2) =

∫ 1

−1

f(x)dx

for polynomials of degree 3 or less. This is plausible since there are four parameters to choose (w1, w2, x1,
x2) and four constraints obtained by forcing the rule to be exact for the functions 1, x, x2, and x3:

w1 + w2 = 2

w1x1 + w2x2 = 0

w1x
2
1 + w2x

2
2 = 2/3

w1x
3
1 + w2x

3
2 = 0

By multiplying the second equation by x2
1 and subtracting it from the fourth equation we get w2x2(x

2
1−x2

2) =
0, and so x2 = −x1. It follows from the second equation that w1 = w2 and thus, from the first equation,
w1 = w2 = 1. From the third equation, x2

1 = 1/3 and so x1 = −1/
√

3 and x2 = 1/
√

3. Thus, for any f(x)
we have ∫ 1

−1

f(x)dx ≈ f(−1/
√

3) + f(1/
√

3).
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This is the two-point Gauss-Legendre rule.
The m-point Gauss-Legendre rule has the form

QGL(m) = w1f(x1) + · · ·+ wmf(xm),

where the wi and xi are chosen to make the rule exact for polynomials of degree 2m− 1. One way to define
these 2m parameters is by the 2m nonlinear equations

w1x
k
1 + w2x

k
2 + · · ·+ wmxk

m =
1− (−1)k+1

k + 1
, k = 0:2m− 1.

The kth equation is the requirement that the rule

w1f(x1) + · · ·+ wmf(xm) =

∫ 1

−1

f(x)dx

be exact for f(x) = xk. It turns out that this system has a unique solution, which we encapsulate in the
following function for the cases m = 2:6:

function [w,x] = GLweights(m)

% [w,x] = GLWeights(m)

% w is a column m-vector consisting of the weights for the m-point Gauss-Legendre rule.

% x is a column m-vector consisting of the abscissae.

% m is an integer that satisfies 2 <= m <= 6.

w = ones(m,1);

x = ones(m,1);

if m==2

w(1) = 1.000000000000000; w(2) = w(1);

x(1) = -0.577350269189626; x(2) = -x(1);

elseif m==3

:

end

The Gauss-Legendre rules

QGL(m) = w1f(x1) + · · ·+ wmf(xm) ≈
∫ 1

−1

f(x)dx

are not restrictive even though they pertain to integrals from −1 to 1. By a change of variable, we have

∫ b

a

f(x)dx =
b− a

2

∫ 1

−1

g(x)dx,

where

g(x) = f

(
a + b

2
+

b− a

2
x

)
,

and so

b− a

2

(
w1f

(
a + b

2
+

b− a

2
x1

)
+ · · ·+ wmf

(
a + b

2
+

b− a

2
xm

))
≈
∫ b

a

f(x)dx.

This gives
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function numI = QGL(f,a,b,m)

% f is a handle that references a function of the form f(x) that

% is defined on [a,b]. f should return a column vector if x is a column vector.

% a,b are real scalars.

% m is an integer that satisfies 2 <= m <= 6.

% numI is the m-point Gauss-Legendre approximation of the

% integral of f(x) from a to b.

[w,x] = GLWeights(m);

fvals = f((b-a)/2)*x + ((a+b)/2)*ones(m,1));

numI = ((b-a)/2)*w’*fvals;

It can be shown that ∣∣∣∣∣

∫ b

a

f(x)dx −QGL(m)

∣∣∣∣∣ ≤
(b− a)2m+1(m!)4

(2m + 1)[(2m)!]3
M2m,

where M2m is a constant that bounds |f2m(x)| on [a, b]. The script file GLvsNC compares the QNC(m) and
QGL(m) rules when they are applied to the integral of sin(x) from 0 to π/2:

m NC(m) GL(m)

------------------------------------------------

2 0.7853981633974483 0.9984726134041148

3 1.0022798774922104 1.0000081215555008

4 1.0010049233142790 0.9999999771971151

5 0.9999915654729927 1.0000000000395670

6 0.9999952613861668 0.9999999999999533

Notice that for this particularly easy problem, QGL(m) has approximately the accuracy of QNC(2m).

It is possible to formulate an adaptive quadrature procedure that is based on a Gauss-Legendre rule.
However, the “weird” location of the abscissae creates a problem. The f-evaluations that are required
when we apply an m-point rule across [a, b] are not shared by the m-point rules applied to the half-interval
problems. The Gauss-Kronrod framework circumvents this problem. The basic idea is to work with a pair
of rules that share f-evaluations. The (15,7) Gauss-Kronrod procedure, works with a 15-point rule

∫ 1

−1

f(x)dx ≈ QGK(15) =

15∑

k=1

ω
(15)
k f(x

(15)
k )

and a 7-point rule,
∫ 1

−1

f(x)dx ≈ QGK(7) =

7∑

k=1

ω
(7)
k f(x

(7)
k ).

The key connection between x(15) and x(7) is this:

x(7) = x(15)(2:2:15).

See Figure 4.x. Moreover, there is a heuristic argument that says

∣∣∣∣
∫ 1

−1

f(x)dx−QGK(15)

∣∣∣∣ ≈ 200|QGK(15) − QGK(7)|1.5. (4.11)

The demo function ShowGK affirms this result.
One can formulate an adaptive procedure based on these two rules that use these facts. We compute

QGK(15) and get QGK(7) “for free” because of the shared f-evaluations. If the discrepancy between the two
rules is too large, then we subdivide the problem and repeat the process on each half-interval. The Matlab

procedure quadgk is based on this idea.
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The 15−point rule
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Figure 4.6 Abscissa location for the (15,7) Gauss-Kronrod Pair

Problems

P4.4.1 If QGL(m) is the m-point Gauss-Legendre estimate for

I =

Z b

a
f(x)dx,

then it can be shown that

|I − QGL(m) | ≤ (b − a)2m+1(m!)4

(2m + 1)[(2m)!]3
M2m ≡ Em,

where the constant M2m satisfies |f (2m)(x)| ≤ M2m for all x ∈ [a, b]. The following questions apply to the case when
f(x) = ecx, where c > 0. Assume that a < b. (a) Give a good choice for M2m. (b) Give an expression for Em+1/Em. (c) Write
a Matlab script that determines the smallest positive integer m so that Em is less than tol.

P4.4.2 Write a function numI = CompQGL(f,a,b,m,n) that approximates the integral of a function from a to b by applying the
m-point Gauss-Legendre rule on n equal-length subintervals of [a, b].

P4.4.3 Develop an addaptive quadrature procedure numI = AdapkGK(f,a,b,tol) that is based on the (15,7) Gauss-Kronrod
pair and the error heuristic (4.11).

4.4.2 Spline Quadrature

Suppose S(x) is a cubic spline interpolant of (xi, yi), i = 1:n and that we wish to compute

I =

∫ xn

x1

S(x)dx.

If the ith local cubic is represented by

qi(x) = ρi4 + ρi,3(x− xi) + ρi,2(x − xi)
2 + ρi,1(x− xi)

3,

then

∫ xi+1

xi

qi(x)dx = ρi,4hi +
ρi,3

2
h2

i +
ρi,2

3
h3

i +
ρi,1

4
h4

i ,

where hi = xi+1 − xi. By summing these quantities from i = 1:n − 1, we obtain the sought-after spline
integral:

function numI = SplineQ(x,y)

% Integrates the spline interpolant of the data specified by the

% column n-vectors x and y. It is a assumed that x(1) < ... < x(n)

% and that the spline is produced by the Matlab function spline.

% The integral is from x(1) to x(n).
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S = spline(x,y);

[x,rho,L,k] = unmkpp(S);

sum = 0;

for i=1:L

% Add in the integral from x(i) to x(i+1).

h = x(i+1)-x(i);

subI = h*(((rho(i,1)*h/4 + rho(i,2)/3)*h + rho(i,3)/2)*h + rho(i,4));

sum = sum + subI;

end

numI = sum;

The script file ShowSplineQ uses this function to produce the following estimates for the integral of sine
from 0 to π/2:

m Spline Quadrature

----------------------------

5 1.0001345849741938

50 0.9999999990552404

500 0.9999999999998678

Here, the spline interpolates the sine function at x = linspace(0,pi/2,m).

Problems

P4.4.4 Modify SplineQ so that a four-argument call SplineQ(x,y,a,b) returns the integral of the spline interpolant from a to
b. Assume that x1 ≤ a ≤ b ≤ xn.

P4.4.5 Let a(t) denote the acceleration of an object at time t. If v0 is the object’s velocity at t = 0, then the velocity at time
t is prescribed by

v(t) = v0 +

Z t

0
a(τ )dτ.

Likewise, if x0 is the position at t = 0, then the position at time t is given by

x(t) = x0 +

Z t

0
v(τ )dτ.

Now suppose that we have snapshots a(ti) of the acceleration at times ti, i = 1:m, t1 = 0. Assume that we know the initial
position x0 and velocity v0. Our goal is to estimate position from this data. Spline quadrature will be used to approximate the
preceding integrals. Let Sa(t) be the not-a-knot spline interpolant of the acceleration data (ti, a(ti)), i = 1:m, and define

ṽ(t) = v0 +

Z t

0
Sa(τ )dτ.

Let Sv(t) be the not-a-knot spline interpolant of the data (ti, ṽ(ti)), i = 1:m, and define

x̃(t) = x0 +

Z t

0
Sv(τ )dτ.

The spline interpolant Sx(t) of the data (ti, x̃(ti)) is then an approximation of the true position. Write a function

function Sx = PosVel(a,t,x0,v0)}

%

% t is an m-vector of equally spaced time values with t(1) = 0, m>=2.

% a is an m-vector of accelerations, a(i) = acceleration at time t(i).

% x0 and v0 are the position and velocity at t=0

%

% Sx the pp-representation of a spline that approximates position.

Try it out on the data t = linspace(0,50,500), with a(t) = 10e−t/25 sin(t). However, before you turn the a vector over to
PosVel, contaminate it with noise: a = a + .01*randn(size(a)). Produce a plot of the exact and estimated positions across
[0,50] and a separate plot of x(t) − Sx(t) across [0,50]. Also print the value of Sx(t) at t = 50. Repeat with m = 50 instead of
500. Use the Matlab spline function.



4.5. MATLAB’S QUADRATURE TOOLS 19

P4.4.6 Assume that we have a vectorized implementation f.m of a positive-valued function f(x) and that x is a given column
n-vector with x1 < ... < xn. (a) Write a Matlab fragment that sets up a column n-vector q with the property that

˛

˛

˛

˛

qi −
Z xi

x1

f(x)dx

˛

˛

˛

˛

≤ tol

for i = 1:n. Assume that tol is a given positive tolerance. Make effective use of quad. (By setting the relative error tolerance
to zero, quad will return an approximation of the integral that satisfies the absolute error tolerance.) (b) Assume that the array
q has been successfully computed in (a). Making effective use of spline, ppval, and the idea of inverse interpolation, show how
to estimate x∗ so that

Z x∗

x1

f(x) =
1

2

Z xn

x1

f(x)dx.

P4.4.7 Let (x1, y1), . . . , (xn, yn) be given points in the plane. Let di be the straight-line distance between (xi, yi) and
(xi+1, yi+1), i = 1:n − 1. Set ti = d1 + · · · + di−1, i = 1:n. Suppose Sx(t) is a spline interpolant of (t1, x1), . . . , (tn, xn) and
that Sy(t) is a spline interpolant of (t1, y1), . . . , (tn, yn). It follows that the curve Λ = {(Sx(t), Sy(t)) : t1 ≤ t ≤ tn} is smooth
and passes through the n points. Write a Matlab function [Sx,Sy,L] = Arc(x,y) that returns the two splines interpolants (in
pp-form) and the length of Λ, i.e.,

L =

Z tn

t1

q

[S′
x(t)]2 + [S′

y(t)]2dt.

Use quad for the integral with the default tolerance. You will have to set up an integrand function that accesses the piecewise
quadratic functions S′

x(t) and S′

y (t). Write a script that displays the curve Λ where the input points are prescribed by

x = [ 3 2 1 2 4 5 4 3 2 4 5 5 3];

y = [ 7 6 5 4 3 2 1 1 2 4 5 6 7];

Print the curve length in the title of the plot.

4.5 Matlab’s Quadrature Tools

Consider the function f(x) = humps(x) where humps is the built-in Matlab function

humps(x) =
1

(x− .3)2 + .01
+

1

(x− .9)2 + .04
− 6.

This function’s higher derivatives are large near x = .3 and x = .9:
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f(x) = humps(x)

The function quad can be used to approximate the integral of this function from 0 to 1:

>> Q = quad(@humps,0,1)

Q = 29.858326128427638
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The number of f-evaluations can be obtained by supplying a second output parameter:

>> [Q,fevals] = quad(@humps,0,1)

Q = 29.858326128427638

fevals = 145

Unless it is told otherwise, quad aims to compute the required integral with absolute error bounded by
.000001. The error tolerance can be modified:

>> [Q,fevals] = quad(@humps,0,1,10^-12)

Q = 29.858325395498067

fevals = 2321

The function quad implements an adaptive version of the composite Simpson rule. See §4.4. If high accuracy
is required, then it is sometimes more economical to use the Matlab quadrature function quadl:

>> [Q,fevals] = quadl(@humps,0,1,10^-12)

Q = 29.858325395498671

fevals = 1608

The function ShowQUADs(f,a,b) approximates I(f, a, b) and can be used to experiment with these two
quadrature procedures for various choices of error tolerance. ShowQUADs(@sin,0,pi) tells us that quadl is
to be preferred for very smooth integrands like f(x) = sin(x):

quad quadl

tol Approximation f-evals Approximation f-evals

-------------------------------------------------------------------

1.0e-003 1.999993496535 13 1.999999977471 18

1.0e-006 1.999999996398 33 1.999999977471 18

1.0e-009 1.999999999999 129 2.000000000000 48

1.0e-012 2.000000000000 497 2.000000000000 48

On the other hand, ShowQuads(@(x) sin(1./x),.01,1) reveals that for nasty integrands like sin(1/x) it is
better to use a low-order rule like quad, especially for modest tolerances:

quad quadl

tol Approximation f-evals Approximation f-evals

-------------------------------------------------------------------

1.0e-003 0.463673444706 25 0.504011796906 138

1.0e-006 0.504041285733 237 0.503981893171 558

1.0e-009 0.503981892714 981 0.503981893175 1338

1.0e-012 0.503981893175 3985 0.503981893175 3648

The function quadgk offers greater control over error (absolute or relative) and can report back an
estimate of the error if required. A call of the form

[Q,est] = quadgk(@f,a,b,’AbsTol’,tol1,’RelTol’,tol2)

attempts to return a value in Q that satisfies

|I(f, a, b)− Q| ≤ max{AbsTol,RelTol}.

If relative error is critical, then set tol1=0. If absolute error is the concern, set tol2 = 0. In either case,
the estimate returned in est is an estimate of the absolute error. If quadgk spots a problem with its error
control, then it may suggest an increase in the value of MaxIntervalCount which permits the procedure to
get a more accurate answer by evaluating f and more points. In this case you can try again with a response
of t he form
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[Q,est] = quadgk(@f,a,b,’AbsTol’,tol1,’RelTol’,tol2,’MaxIntervalCount’,BiggerValue)

Here are some results when quadgk is used to compute

I =

∫ 1

0

100 sin

(
1

x

)
dx

with BiggerValue = 100000:

Result Via Error AbsTol RelTol

quadgk Estimate

-------------------------------------------------

50.40654795 0.00061442 0.0010 0.0000

50.40465490 0.03100950 0.0000 0.0010

50.40670252 0.00007224 0.0001 0.0000

50.40658290 0.00430233 0.0000 0.0001

In some cases, quadgk can handle endpoint singularities. For example,

Q = quadgk(@(x) 1./sqrt(x),0,1)

Q = 1.999999999999763

The procedure can also accommodate infinite endpoints as in

I =
1√
2π

∫ +∞

−∞

e−(x−µ)2/(2σ2) dx.

Thus,

mu = 1;

sigma = 3;

Q = quadgk(@(x) exp(-((x-mu).^2/(2*sigma^2)))/(sigma*sqrt(2*pi)),-inf,inf)

Q = 1.000000000146726

thereby affirming that the area under the normal distribution N(µ, σ) equals one.

Problems

P4.5.1 Consider the function

I(α) = (2 + sin(10α))

Z 2

0
xα sin

„

α

2 − x

«

dx

Write a script that confirms the fact that

max
0≤α≤5

I(α) = I(.7859336743...)

Make effective use of Matlab’s quadrature software.
P4.5.2 It turns out that

limε→0

Z 1

ε

1

x
· cos

„

ln(x)

x

«

dx = .3233674316...

Write the most efficient script you can that confirms this result. Make effective use of Matlab’s quadrature software.



22 CHAPTER 4. NUMERICAL INTEGRATION

Script Files

ShowNCError Illustrates NCerror.
ShowCompQNC Illustrates CompQNC on three examples.
ShowAdapts Illustrates AdaptQNC.
GLvsNC Compares Gauss-Legendre and Newton-Cotes rules.
ShowSplineQ Illustrates SplineQ.
ShowGK Illustrates the (15,7) Gauss-Kronrod rule.

Function Files

ShowQuads Illustrates quad, quadl, and quadgk.
ShowNCIdea Displays the idea behind the Newton-Cotes rules.
NCWeights Constructs the Newton-Cotes weight vector.
QNC The simple Newton-Cotes rule.
NCError Error in the simple Newton-Cotes rule.
CompQNC Equally-spaced, composite Newton-Cotes rule.
AdaptQNC Adaptive Newton-Cotes quadrature.
SpecHumps The humps function with function call counters.
GLWeights Constructs the Gauss-Legendre weight vector.
QGL The simple Gauss-Legendre rule.
SplineQ Spline quadrature.
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Chapter 9

The Initial Value Problem

§9.1 Basic Concepts

§9.2 The Runge-Kutta Methods

§9.3 The Adams Methods

The goal in the initial value problem (IVP) is to find a function y(t) given its value at some initial time
t0 and a recipe f(t, y) for its slope:

y′(t) = f(t, y(t)), y(t0) = y0.

In applications we may want to plot an approximation to y(t) over a designated interval of interest [t0, tmax]
in an effort to discover qualitative properties of the solution. Or we may require a highly accurate estimate
of y(t) at some single, prescribed value t = T .

The methods we develop produce a sequence of solution snapshots (t1, y1), (t2, y2), . . . that are regarded
as approximations to (t1, y(t1), (t2, y(t2)), etc. All we have at our disposal is the “slope function” f(t, y), best
thought of as a Matlab function f(t,y), that can be called whenever we need information about where
y(t) is “headed.” IVP solvers differ in how they use the slope function.

In §9.1 we use the Euler methods to introduce the basic ideas associated with approximate IVP solving:
discretization, local error, global error, stability, etc. In practice the IVP usually involves a vector of unknown
functions, and the treatment of such problems is also covered in §9.1. In this setting the given slope function
f(t, y) is a vector of scalar slope functions, and its evaluation tells us how each component in the unknown
y(t) vector is changing with t.

The Runge-Kutta and Adams methods are then presented in §9.2 and §9.3 together with the built-in
Matlab IVP solvers ode23 and ode45. We also discuss stepsize control, a topic of great practical importance
and another occasion to show off the role of calculus-based heuristics in scientific computing.

Quality software for the IVP is very complex. Years of research and development stand behind codes like
ode23 and ode45. The implementations that we develop in this chapter are designed to build intuition and,
if anything, are just the first step in the long journey from textbook formula to production software.

9.1 Basic Concepts

A “family” of functions generally satisfies a differential equation of the form y′(t) = f(t, y). The initial
condition y(t0) = y0 singles out one of these family members for the solution to the IVP. For example,
functions of the form y(t) = ce−5t satisfy y′(t) = −5y(t). If we stipulate that y(0) = 1, then y(t) = e−5t is
the unique solution to the IVP. (See Figure 9.1.) Our goal is to produce a sequence of points (ti, yi) that
reasonably track the solution curve as time evolves. The Euler methods that we develop in this section
organize this tracking process around a linear model.

1
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Solutions to y’(t)  =  −5 y(t)

Figure 9.1 Solution curves

9.1.1 Derivation of the Euler Method

From the initial condition, we know that (t0, y0) is on the solution curve. At this point the slope of the
solution is computable via the function f :

f0 = f(t0 , y0).

To estimate y(t) at some future time t1 = t0 + h0 we consider the following Taylor expansion:

y(t0 + h0) ≈ y(t0) + h0y
′(t0) = y0 + h0f(t0 , y0).

This suggests that we use

y1 = y0 + h0f(t0 , y0)

as our approximation to the solution at time t1. The parameter h0 > 0 is the step, and it can be said that
with the production of y1 we have “integrated the IVP forward” to t = t1.

With y1 ≈ y(t1) in hand, we try to push our knowledge of the solution one step further into the future.
Let h1 be the next step. A Taylor expansion about t = t1 says that

y(t1 + h1) ≈ y(t1) + h1y
′(t1) = y(t1) + h1f(t1 , y(t1)).

Note that in this case the right-hand side is not computable because we do not know the exact solution at
t = t1. However, if we are willing to use the approximations

y1 ≈ y(t1)

and

f1 = f(t1 , y1) ≈ f(t1, y(t1)),

then at time t2 = t1 + h1 we have

y(t2) ≈ y2 = y1 + h1f1.

The pattern is now clear. At each step we evaluate f at the current approximate solution point (tn, yn) and
then use that slope information to get yn+1. The key equation is

yn+1 = yn + hnf(tn , yn),

and its repeated application defines the Euler method:
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n = 0
Repeat:

fn = f(tn, yn)
Determine the step hn > 0 and set tn+1 = tn + hn.
yn+1 = yn + hnfn.

n = n + 1

The script file ShowEuler solicits the time steps interactively and applies the Euler method to the problem
y′ = −5y, y(0) = 1. (See Figure 9.2.) The determination of the step size is crucial.
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Figure 9.2 Five steps of Euler’s method

Our intuition says that we can control error by choosing hn appropriately. Accuracy should increase
with shorter steps. On the other hand, shorter steps mean more f-evaluations as we integrate across the
interval of interest. As in the quadrature problem and the nonlinear equation-solving problem, the number
of f-evaluations usually determines execution time, and the efficiency analysis of any IVP method must
include a tabulation of this statistic. The basic game to be played is to get the required snapshots of y(t)
with sufficient accuracy, evaluating f(t, y) as infrequently as possible. To see what we are up against, we
need to understand how the errors in the local model compound as we integrate across the time interval of
interest.

9.1.2 Local Error, Global Error, and Stability

Assume in the Euler method that yn−1 is exact and let h = hn−1. By subtracting yn = yn−1 + hfn−1 from
the Taylor expansion

y(tn) = yn−1 + hy′(tn−1) +
h2

2
y(2)(η), η ∈ [tn−1, tn],

we find that

y(tn)− yn =
h2

2
y(2)(η).

This is called the local truncation error (LTE) In general, the LTE for an IVP method is the error that
results when a single step is performed with exact “input data.” It is a key attribute of any IVP solver, and
the order of the method is used to designate its form. A method has order k if its LTE goes to zero like
hk+1. Thus, the Euler method has order 1. The error in an individual Euler step depends on the square
of the step and the behavior of the second derivative. Higher-order methods are pursued in the next two
sections.
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A good way to visualize the LTE is to recognize that at each step, (tn, yn) sits on some solution curve
yn(t) that satisfies the differential equation y′(t) = f(t, y(t)). With each step we jump to a new solution
curve, and the size of the jump is the LTE. (See Figure 9.3.)
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Figure 9.3 Jumping trajectories

Distinct from the local truncation error is the global error. The global error gn is the actual difference
between the t = tn solution yn produced by the IVP solver and the true IVP solution y(tn):

gn = y(tn)− yn.

As we have mentioned, the local truncation error in getting yn is defined by

LTEn = yn−1(tn) − yn,

where yn−1(t) satisfies the IVP

y′(t) = f(t, y(t)), y(tn−1) = yn−1.

LTE is tractable analytically and, as we shall see, it can be estimated in practice. However, in applications
it is the global error that is usually of interest. It turns out that it is possible to control global error by
controlling the individual LTEs if the underlying IVP is stable. We discuss this after we prove the following
result.

Theorem 9 consec Assume that, for n = 0:N , a function yn(t) exists that solves the IVP

y′(t) = f(t, y(t)), y(tn) = yn,

where (t0, y0), . . . , (tN , yN ) are given and t0 < t1 < · · · < tN . Define the global error by

gn = y0(tn)− yn

and the local truncation error by
LTEn = yn−1(tn)− yn.

If

fy =
∂f(t, y)

∂y
≤ 0

for all t ∈ [t0, tN ] and none of the trajectories

{(t, yn(t)) : t0 ≤ t ≤ tN}, n = 0:N
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intersect, then for n = 1:N

|gn| ≤
n∑

k=1

|LTEk|.

Proof If y0(tn) > yn−1(tn), then because fy is negative we have

∫ tn

tn−1

(f(t, y0(t)) − f(t, yn−1(t)) dt < 0.

It follows that

0 < y0(tn) − yn−1(tn) = (y0(tn−1) − yn−1(tn−1)) +

∫ tn

tn−1

(f(t, y0(t)) − f(t, yn−1(t)) dt

< (y0(tn−1) − yn−1(tn−1)) ,

and so
|y0(tn)− yn−1(tn)| ≤ |y0(tn−1) − yn−1(tn−1)|. (9.1)

Likewise, if y0(tn) < yn−1(tn), then

∫ tn

tn−1

(f(t, yn−1(t))− f(t, y0(t)) dt < 0,

and so

0 < yn−1(tn)− y0(tn) = (yn−1(tn−1)− y0(tn−1)) +

∫ tn

tn−1

(f(t, yn−1(t)) − f(t, y0(t)) dt

< yn−1(tn−1)− y0(tn−1).

Thus, in either case (9.1) holds and so

|gn| = |y0(tn)− yn|

≤ |y0(tn)− yn−1(tn)| + |yn−1(tn)− yn|

< |y0(tn−1)− yn−1(tn−1)| + |yn−1(tn)− yn|

= |gn−1| + |LTEn|.

The theorem follows by induction since g1 = LTE1. �

The theorem essentially says that if ∂f/∂y is negative across the interval of interest, then global error at
t = tn is less than the sum of the local errors made by the IVP solver in reaching tn. The sign of this partial
derivative is tied up with the stability of the IVP. Roughly speaking, if small changes in the initial value
induce correspondingly small changes in the IVP solution, then we say that the IVP is stable. The concept is
much more involved than the condition/stability issues that we talked about in connection with the Ax = b
problem. The mathematics is deep and interesting but beyond what we can do here.

So instead we look at the model problem y′(t) = ay(t), y(0) = c and deduce some of the key ideas. In
this example, ∂f/∂y = a and so Theorem 9 applies if a < 0. We know that the solution y(t) = ceat decays
if and only if a is negative. If ỹ(t) solves the same differential equation with initial value y(0) = c̃, then

|ỹ(t)− y(t)| = |c̃− c|eat,

showing how “earlier error” is damped out as t increases.
To illustrate how global error might be controlled in practice, consider the problem of computing y(tmax)

to within a tolerance tol, where y(t) solves a stable IVP y′(t) = f(t, y(t)), y(t0) = y0. Assume that a
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fixed-step Euler method is to be used and that we have a bound M2 for |y(2)(t)| on the interval [t0, tmax]. If
h = (tmax − t0)/N is the step size, then from what we know about the local truncation error of the method,

|LTEn| ≤M2
h2

2
.

Assuming that Theorem 9 applies,

|y(tmax) − yN | ≤
N∑

n=1

|LTEn| = M2N
h2

2
=

tmax − t0
2

M2h.

Thus, to make this upper bound less than a prescribed tol > 0, we merely set N to be the smallest integer
that satisfies

(tmax − t0)
2

2N
M2 ≤ tol.

Here is an implementation of the overall process:

function [tvals,yvals] = FixedEuler(f,y0,t0,tmax,M2,tol)

% Fixed step Euler method.

%

% f is a handle that references a function of the form f(t,y).

% M2 a bound on the second derivative of the solution to

% y’ = f(t,y), y(t0) = y0

% on the interval [t0,tmax].

% Determine positive n so that if tvals = linspace(t0,tmax,n), then

% y(i) is within tol of the true solution y(tvals(i)) for i=1:n.

n = ceil(((tmax-t0)^2*M2)/(2*tol))+1;

h = (tmax-t0)/(n-1);

yvals = zeros(n,1);

tvals = linspace(t0,tmax,n)’;

yvals(1) = y0;

for k=1:n-1

fval = f(tvals(k),yvals(k));

yvals(k+1) = yvals(k)+h*fval;

end

Figure 9.4 shows the error when this solution framework is applied to the model problem y′ = −y across the
interval [0, 5]. The trouble with this approach to global error control is that (1) we rarely have good bound
information about |y(2)| and (2) it would be better to determine h adaptively so that longer step sizes can
be taken in regions where the solution is smooth. This matter is pursued in §9.3.5.

Rounding errors are also an issue in IVP solving, especially when lots of very short steps are taken. In
Figure 9.5 we plot the errors sustained when we solve y′ = −y, y(0) = 1 across [0, 1] with Euler’s method in a
three-digit floating point environment. The results for steps h =1/140, 1/160, and 1/180 are reported. Note
that the error gets worse as h gets smaller because the step sizes are in the neighborhood of unit roundoff.
However, for the kind of problems that we are looking at, it is the discretization errors that dominate the
discussion of accuracy.

Another issue that colors the performance of an IVP solver is the stability of the method itself. This
is quite distinct from the notion of problem stability discussed earlier. It is possible for a method with a
particular h to be unstable when it is applied to a stable IVP. For example, if we apply the Euler method
to y′(t) = −10y(t), then the iteration takes the form

yn+1 = (1− 10h)yn.

To ensure that the errors are not magnified as the iteration progresses, we must insist that

|1− 10h| < 1
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Figure 9.5 Roundoff error in fixed-step Euler

(i.e., h < 1/5). For all h that satisfy this criterion, the method is stable. If h > 1/5, then any error δ in
the initial condition will result in a (1 − 10h)nδ contamination of the nth iterate. With this kind of error
magnification, we say that the method is unstable. Different methods have different h restrictions in order to
guarantee stability, and sometimes these restrictions force us to choose h much smaller than we would like.

9.1.3 The Backward Euler Method

To clarify this point about method stability, we examine the backward Euler method. The (forward) Euler
method is derived from a Taylor expansion of the solution y(t) about t = tn. If instead we work with the
approximation

y(tn+1 + h) ≈ y(tn+1) + y′(tn+1)h = y(tn+1) + f(tn+1 , y(tn+1))h

and set h = −hn = (tn − tn+1), then we get

y(tn) ≈ y(tn+1) − hnf(tn+1, y(tn+1)).

Substituting yn for y(tn) and yn+1 for y(tn+1), we are led to
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yn+1 = yn + hnf(tn+1 , yn+1)

and, with repetition, the backward Euler framework:

n = 0
Repeat:

Determine the step hn > 0.
tn+1 = tn + hn.

Let yn+1 solve F (z) = z − hnf(tn+1 , z)− yn = 0.
n = n + 1

Like the Euler method, the backward Euler method is first order. However, the two techniques differ in a
very important aspect. Backward Euler is an implicit method because it defines yn+1 implicitly. For a simple
problem like y′ = ay this poses no difficulty:

yn+1 = yn + hnayn+1 =
1

1− hna
yn.

Observe that if a < 0, then the method is stable for all choices of positive step size. This should be contrasted
with the situation in the Euler setting, where |1 + ah| < 1 is required for stability.

Euler’s is an example of an explicit method, because yn+1 is defined explicity in terms of quantities already
computed. [e.g., yn, f(tn , yn)]. Implicit methods tend to have better stability properties than their explicit
counterparts. But there is an implementation penalty to be paid, because yn+1 is defined as a zero of a
nonlinear function. In backward Euler, yn+1 is a zero of F (z) = z − hnf(tn+1, z). Fortunately, this does
not necessarily require the application of the Chapter 8 root finders. A simpler, more effective approach is
presented in §9.3.

9.1.4 Systems

We complete the discussion of IVP solving basics with comments about systems of differential equations. In
this case the unknown function y(t) is a vector of unknown functions:

y(t) =




z1(t)

...
zd(t)



 .

(We name the component functions with a z instead of a y to avoid confusion with earlier notation.) In
this case, we are given an initial value for each component function and a recipe for its slope. This recipe
generally involves the value of all the component functions:




z′1(t)

...
z′d(t)



 =




f1(t, z1(t), . . . , zd(t))

...
fm(t, z1(t), . . . , zd(t))




z1(t0) = z10

...
zd(t0) = zd0

.

In vector language, y′(t) = f(t, y(t)), y(t0) = y0, where the y’s are now column d-vectors. Here is a d = 2
example:

u′(t) = 2u(t)− .01u(t)v(t)
v′(t) = −v(t) + .01u(t)v(t)

, u(0) = u0, v(0) = v0.

It describes the density of rabbit and fox populations in a classical predator-prey model. The rate of change
of the rabbit density u(t) and the fox density v(t) depend on the current rabbit/fox densities.

Let’s see how the derivation of Euler’s method proceeds for a systems problem like this. We start with
a pair of time-honored Taylor expansions:

u(tn+1) ≈ u(tn) + u′(tn)hn = u(tn) + hn(2u(tn)− .01u(tn)v(tn))

v(tn+1) ≈ v(tn) + v′(tn)hn = v(tn) + hn(−v(tn) + .01u(tn)v(tn))
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Here (as usual), tn+1 = tn + hn. With the definitions

yn =

[
un

vn

]
≈
[

u(tn)
v(tn)

]
= y(tn)

and

fn = f(tn , yn) =

[
2un − .01unvn

−vn + .01unvn

]
≈
[

2u(tn)− .01u(tn)v(tn)
−v(tn) + .01u(tn)v(tn)

]
= f(tn, y(tn)),

we obtain he following vector implementation of the Euler method:
[

un+1

vn+1

]
=

[
un

vn

]
+ hn

[
2un − .01unvn

−vn + .01unvn

]
.

In full vector notation, this can be written as

yn+1 = yn + hnfn,

which is exactly the same formula that we developed in the scalar case.
As we go through the next two sections presenting more sophisticated IVP solvers, we shall do so for

scalar (d = 1) problems, being mindful that all method-defining equations apply at the system level with no
modification.

Systems can arise in practice from the conversion of higher-order IVPs. In a kth order IVP, we seek a
function y(t) that satisfies

y(k)(t) = f(t, y(t), y(1)(t), . . . , y(k−1)(t)) where






y(t0) = y0

y(1)(t0) = y
(1)
0

...

y(k−1)(t0) = y
(k−1)
0

and y0, y
(1)
0 , . . . , y

(k−1)
0 are given initial values. Higher order IVPs can be solved through conversion to a

system of first-order IVPs. For example, to solve

v′′(t) = 2v(t) + v′(t) sin(t), v(0) = α, v′(0) = β,

we define z1(t) = v(t) and z2(t) = v′(t). The problem then transforms to

z′1(t) = z2(t)
z′2(t) = 2z1(t) + z2(t) sin(t)

, z1(0) = α, z2(0) = β.

Problems

P9.1.1 Produce a plot of the solution to

y′(t) = −ty +
1

y2
, y(1) = 1

across the interval [1,2]. Use the Euler method.

P9.1.2 Compute an approximation to y(1) where

x′′(t) = (3 − sin(t))x′(t) + x(t)/(1 + [y(t)]2),

y′(t) = − cos(t)y(t) − x′(t)/(1 + t2),

x(0) = 3, x′(0) = −1, and y(0) = 4. Use the forward Euler method with fixed step determined so that three significant digits of
accuracy are obtained. Hint: Define z(t) = x′(t) and rewrite the recipe for x′′ as a function of x, y, and z. This yields a d = 3
system.

P9.1.3 Plot the solutions to

y′(t) =

»

−1 4
−4 −1

–

y(t), y(0) =

»

2
−1

–

across the interval [0,3].

P9.1.4 Consider the initial value problem
Ay′(t) = By(t), y(0) = y0,

where A and B are given n-by-n matrices with A nonsingular. For fixed step size h, explain how the backwards Euler method
can be used to compute approximate solutions at t = kh, k = 1:100.
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9.2 The Runge-Kutta Methods

In an Euler step, we “extrapolate into the future” with only a single sampling of the slope function f(t, y).
The method has order 1 because its LTE goes to zero as h2. Just as we moved beyond the trapezoidal
rule in Chapter 4, so we must now move beyond the Euler framework with more involved models of the
slope function. In the Runge-Kutta framework, we sample f at several judiciously chosen spots and use the
information to obtain yn+1 from yn with the highest possible order of accuracy.

9.2.1 Derivation

The Euler methods evaluate f once per step and have order 1. Let’s sample f twice per step and see if we
can obtain a second-order method. We arrange it so that the second evaluation depends on the first:

k1 = hf(tn , yn)

k2 = hf(tn + αh, yn + βk1)

yn+1 = yn + ak1 + bk2 .

Our goal is to choose the parameters α, β, a, and b so that the LTE is O(h3). From the Taylor series we
have

y(tn+1) = y(tn) + y(1)(tn)h + y(2)(tn)
h2

2
+ O(h3).

Since

y(1)(tn) = f

y(2)(tn) = ft + fyf

where

f = f(tn , yn)

ft =
∂f(tn , yn)

∂t

fy =
∂f(tn , yn)

∂y
,

it follows that

y(tn+1) = y(tn) + fh + (ft + fyf)
h2

2
+ O(h3). (9.2)

On the other hand,

k2 = hf(tn + αh, yn + βk1) = h
(
f + αhft + βk1fy + O(h2)

)

and so

yn+1 = yn + ak1 + bk2 = yn + (a + b) fh + b (αft + βffy )h2 + O(h3). (9.3)

For the LTE to be O(h3), the equation

y(tn+1) − yn+1 = O(h3)

must hold. To accomplish this, we compare terms in (9.2) and (9.3) and require

a + b = 1

2bα = 1

2bβ = 1 .
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There are an infinite number of solutions to this system, the canonical one being a = b = 1/2 and α = β = 1.
With this choice the LTE is O(h3), and we obtain a second-order Runge-Kutta method:

k1 = hf(tn , yn)

k2 = hf(tn + h, yn + k1)

yn+1 = yn + (k1 + k2)/2 .

The actual expression for the LTE is given by

LTE(RK2) =
h3

12
(ftt + 2ffty + f2fyy − 2ftfy − 2ff2

y ),

where the partials on the right are evaluated at some point in [tn, tn + h]. Notice that two f-evaluations are
required per step.

The most famous Runge-Kutta method is the classical fourth order method:

k1 = hf(tn , yn)

k2 = hf(tn + h
2 , yn + 1

2k1)

k3 = hf(tn + h
2 , yn + 1

2k2)

k4 = hf(tn + h, yn + k3)

yn+1 = yn + 1
6(k1 + 2k2 + 2k3 + k4) .

This can be derived using the same Taylor expansion technique illustrated previously. It requires four
f-evaluations per step.

The function RKStep can be used to carry out a Runge-Kutta step of prescribed order. Here is its
specification along with an abbreviated portion of the implementation:

function [tnew,ynew,fnew] = RKstep(f,tc,yc,fc,h,k)

% f is a handle that references a function of the form f(t,y)

% where t is a scalar and y is a column d-vector.

% yc is an approximate solution to y’(t) = f(t,y(t)) at t=tc.

% fc = f(tc,yc).

% h is the time step.

% k is the order of the Runge-Kutta method used, 1<=k<=5.

% tnew=tc+h, ynew is an approximate solution at t=tnew, and

% fnew = f(tnew,ynew).

if k==1

k1 = h*fc;

ynew = yc + k1;

elseif k==2

k1 = h*fc;

k2 = h*f(tc+(h),yc+(k1));

ynew = yc + (k1 + k2)/2;

elseif k==3

k1 = h*fc;

k2 = h*f(tc+(h/2),yc+(k1/2));

k3 = h*f(tc+h,yc-k1+2*k2);

ynew = yc + (k1 + 4*k2 + k3)/6;

elseif k==4

:

end

tnew = tc+h;

fnew = f(tnew,ynew);
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As can be imagined, symbolic algebra tools are useful in the derivation of such an involved sampling and
combination of f-values.

Problems

P9.2.1 The RKF45 method produces both a fourth order estimate and a fifth order estimate using six function evaluations:

k1 = hf(tn, yn)

k2 = hf(tn + h
4
, yn + 1

4
k1)

k3 = hf(tn + 3h
8

, yn + 3
32

k1 + 9
32

k2)

k4 = hf(tn + 12h
13

, yn + 1932
2197

k1 − 7200
2197

k2 + 7296
2197

k3)

k5 = hf(tn + h, yn + 439
216

k1 − 8k2 + 3680
513

k3 − 845
4104

k4)

k6 = hf(tn + h
2
, yn − 8

27
k1 + 2k2 − 3544

2565
k3 + 1859

4104
k4 − 11

40
k5)

yn+1 = yn + 25
216

k1 + 1408
2565

k3 + 2197
4104

k4 − 1
5
k5

zn+1 = yn + 16
135

k1 + 6656
12825

k3 + 28561
56430

k4 − 9
50

k5 + 2
55

k6 .

Write a script that discovers which of yn+1 and zn+1 is the fourth order estimate and which is the fifth order estimate.

9.2.2 Implementation

Runge-Kutta steps can obviously be repeated, and if we keep the step size fixed, then we obtain the following
implementation:

function [tvals,yvals] = FixedRK(f,t0,y0,h,k,n)

% [tvals,yvals] = FixedRK(fname,t0,y0,h,k,n)

% Produces approximate solution to the initial value problem

%

% y’(t) = f(t,y(t)) y(t0) = y0

%

% using a strategy that is based upon a k-th order Runge-Kutta method. Stepsize

% is fixed. f is a handle that references the function f, t0 is the initial time,

% y0 is the initial condition vector, h is the stepsize, k is the order of

% method (1<=k<=5), and n is the number of steps to be taken,

% tvals(j) = t0 + (j-1)h, j=1:n+1

% yvals(j,:) = approximate solution at t = tvals(j), j=1:n+1

tc = t0; tvals = tc;

yc = y0; yvals = yc’;

fc = f(tc,yc);

for j=1:n

[tc,yc,fc] = RKstep(f,tc,yc,fc,h,k);

yvals = [yvals; yc’];

tvals = [tvals tc];

end

The function file ShowRK can be used to illustrate the performance of the Runge-Kutta methods on the
IVP y′ = −y, y(0) = 1. The results are reported in Figure 9.6. All the derivatives of f are “nice,” which
means that if we increase the order and keep the step size fixed, then the errors should diminish by a factor
of h. Thus for n = 500, h = 1/100 and we find that the error in the kth order method is about 100−k.

Do not conclude from the example that higher-order methods are necessarily more accurate. If the higher
derivatives of the solution are badly behaved, then it may well be the case that a lower-order method gives
more accurate results. One must also be mindful of the number of f-evaluations that are required to purchase
a given level of accuracy. The situation is analogous to what we found in the quadrature unit. Of course,
the best situation is for the IVP software to handle the selection of method and step.
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Figure 9.6 Runge-Kutta error

Problems

P9.2.2 For k = 1:5, how many f -evaluations does the kth-order Runge-Kutta method require to solve y′(t) = −y(t), y(0) = 1
with error ≤ 10−6 across [0,1]?

9.2.3 The Matlab IVP Solving Tools

Matlab supplies a number of techniques for solving initial value problems. We start with ode23, which is
based on a pair of second- and third-order Runge-Kutta methods. With two methods for predicting yn+1,
it uses the discrepancy of the predictions to determine heuristically whether the current step size is “safe”
with respect to the given tolerances.

Both codes can be used to solve systems, and to illustrate how they are typically used, we apply them
to the following initial value problem:

ẍ(t) = − x(t)

(x(t)2 + y(t)2)3/2 x(0) = .4 ẋ(0) = 0

ÿ(t) = − y(t)

(x(t)2 + y(t)2)3/2 y(0) = 0 ẏ(0) = 2 .

These are Newton’s equations of motion for the two-body problem. As t ranges from 0 to 2π, (x(t), y(t))
defines an ellipse.

Both ode23 and ode45 require that we put this problem in the standard y′ = f(t, y) form. To that end,
we define u1(t) = x(t), u2(t) = ẋ(t), u3(t) = y(t), u4(t) = ẏ(t). The given IVP problem transforms to

u̇1(t) = u2(t) u1(0) = .4

u̇2(t) = −u1(t)/(u1(t)
2 + u3(t)

2)3/2 u2(0) = 0

u̇3(t) = u4(t) u3(0) = 0

u̇4(t) = −u3(t)/(u1(t)
2 + u3(t)

2)3/2 u4(0) = 2 .

We then write the following function, which returns the derivative of the u vector:
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function up = Kepler(t,u)

% up = Kepler(t,u)

% t (time) is a scalar and u is a 4-vector whose components satisfy

%

% u(1) = x(t) u(2) = (d/dt)x(t)

% u(3) = y(t) u(4) = (d/dt)y(t)

%

% where (x(t),y(t)) are the equations of motion in the 2-body problem.

%

% up is a 4-vector that is the derivative of u at time t.

r3 = (u(1)^2 + u(3)^2)^1.5;

up = [ u(2) ;...

-u(1)/r3 ;...

u(4) ;...

-u(3)/r3] ;

With this function available, we can call ode23 and plot various results:

tInitial = 0;

tFinal = 2*pi;

uInitial = [ .4; 0 ; 0 ; 2];

tSpan = [tInitial tFinal];

[t, u] = ode23(@Kepler, tSpan, uInitial);

ode23 requires that we pass the name of the “slope function”, the span of integration, and the initial
condition vector. The slope function must be of the form f(t,y) where t is a scalar and y is a vector. It
must return a column vector. In this call the tSpan vector simply specifies the initial and final times. The
output produced is a column vector of times t and a matrix u of solution snapshots. If n = length(t) then
(a) t(0) = tInitial, t(n) = tFinal, and u(k,:) is an approximation to the solution at time t(k). The
time step lengths and (therefore their number) is determined by the default error tolerance: Reltol = 10−3

and AbsTol = 10−6. Basically, ode23 integrates from tInitial to tFinal “as quick as possible” subject to
these two tolerances. We can display the orbit via

plot(u(:,1),u(:,3))

i.e., by plotting the computed y-values against the computed x-values. (See Figure 9.7.) From the output
we display in Figure 9.8 the step lengths with

plot(t(2:length(t)),diff(t))
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Figure 9.7 Generation of the Orbit via ode23
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and in Figure 9.9 the component solutions via

subplot(2,2,1), plot(t,u(:,1)), title(’x(t)’)

subplot(2,2,2), plot(t,u(:,2)), title(’y(t)’)

subplot(2,2,3), plot(t,u(:,3)), title(’x’’(t)’)

subplot(2,2,4), plot(t,u(:,4)), title(’y’’(t)’)

The function ode23 can also be asked to return the solution at specified times. Here is a script that generates
20 solution snapshots and does a spline fit of the output

tSpan = linspace(tInitial,tFinal,20);

[t, u] = ode23(’Kepler’, tSpan, uInitial);

xvals = spline(t,u(:,1),linspace(0,2*pi));

yvals = spline(t,u(:,3),linspace(0,2*pi));

plot(xvals,yvals,u(:,1),u(:,3),’o’)

(See Figure 9.10.)
Using the function odeset it is possible to specify various parameters that are used by ode23. For

example,

tSpan = [tInitial tFinal];

options = odeset(’AbsTol’,.00000001,’RelTol’,.000001,’stats’,’on’);

disp(sprintf(’\n Stats for ode23 Call:\n’))

[t, u] = ode23(’Kepler’, tSpan, uInitial,options);
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overrides the default tolerance for relative error and absolute error and activates the ’stats’ option. As
expected, the time steps are now shorter as shown in Figure 9.11.
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Figure 9.11 ode23 Timesteps with more stringent tolerances

The “cost” statistics associated with the call are displayed in the command window:

517 successful steps

0 failed attempts

1552 function evaluations

0 partial derivatives

0 LU decompositions

0 solutions of linear systems

Sometimes a higher order method can achieve the same accuracy with fewer function evaluations. To
illustrate this we apply ode45 to the same problem:

tSpan = [tInitial tFinal];

options = odeset(’AbsTol’,.00000001,’RelTol’,.000001,’stats’,’on’);

disp(sprintf(’\n Stats for ode45 Call:\n’))

[t, u] = ode45(’Kepler’, tSpan, uInitial,options);
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ode45 is just like ode23 except that it uses a mix of 4th and 5th order Runge-Kutta methods. For this
problem ode45 can take decidedly longer time steps in the “high curvature” regions of the orbit. (Compare
Figure 9.11 and Figure 9.12.) The output statistics reveal that just 337 function evaluations are required.
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Figure 9.12 Stepsize with ode45

Problems

P9.2.3 This is about ode23 vs ode45. Suppose it takes T1 seconds to execute [t,y] = ode23(@MyF,[0,4],y0) and T2 seconds
to execute [t,y] = ode45(@MyF,[0,8],y0) What factors determine T2/T1?

P9.2.4 Our goal is to produce a plot of an approximate solution to the boundary value problem

y′′(t) = f(t,y(t), y′(t)), y(a) = α, y(b) = β.

Assume the availability of a Matlab function f(t,y,yp). (a) Write a function g(mu) that returns an estimate of y(b) where
y(t) solves

y′′(t) = f(t, y(t), y′(t)), y(a) = α, y′(a) = µ.

Use ode23 and define the function that must be passed to it. (b) How could µ∗ be computed so that g(µ∗) = β? (c) Finally,
how could a plot of the boundary value problem solution across [a, b] be obtained?

P9.2.5 Consider the following initial value problem

Aẏ = By + u(t), y(0) = y0,

where A ∈ IRn×n is nonsingular, B ∈ IRn×n, and u(t) ∈ IRn. Making effective use of ode45 with default tolerances, write a
Matlab fragment that assigns to yFinal an estimate of y(tfinal). Write out completely the function that your script passes to
ode45. Assume that A, B, y0, and tfinal are given and that u.m implements u(t).

P9.2.6 Consider the following IVP:

ẍ(t) = 2ẏ(t) + x(t) − µ∗(x(t) + µ)

r3
1

− µ(x(t) − µ∗)

r3
2

, x(0) = 1.2 ẋ(0) = 0,

ÿ(t) = −2ẋ(t) + y(t) − µ∗y(t)

r3
1

− µy(t)

r3
2

, y(0) = 0 ẏ(0) = −1.0493575,

where µ = 1/82.45, µ∗ = 1 − µ, and

r1 =
q

((x(t) + µ)2 + y(t)2

r2 =
q

((x(t) − µ∗)2 + y(t)2

It describes the orbit of a spacecraft that starts behind the Moon (located at (1 − µ, 0)), swings by the Earth (located at
(−µ, 0)), does a large loop, and returns to the vicinity of the Earth before returning to its initial position behind the Moon at
time T0 = 6.19216933. Here, µ = 1/82.45.

(a) Apply ode45 with tinitial = 0, tfinal = T0, and tol = 10−6. Plot the orbit twice, once with the default “pen” and once
with ’.’ so that you can see how the time step varies. (b) Using the output from the ode45 call in part (a), plot the distance
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of the spacecraft to Earth as a function of time across [0, T0]. Use spline to fit the distance “snapshots.” To within a mile,
how close does the spacecraft get to the Earth’s surface? Assume that the Earth is a sphere of radius 4000 miles and that the
Earth-Moon separation is 238,000 miles. Use fmin with an appropriate spline for the objective function. Note that the IVP
is scaled so that one unit of distance is 238,000 miles. (c) Repeat Part (a) with ode23. (d) Apply ode45 with tinitial = 0,
tfinal = 2T0, and tol = 10−6, but change ẏ(0) to and ẏ(0) = −.8. Plot the orbit. For a little more insight into what happens,
repeat with tfinal = 8 ∗ T0. (e) To the nearest minute, compute how long the spacecraft is hidden to an observer on earth
as it swings behind the Moon during its orbit. Assume that the observer is at (−µ, 0) and that the Moon has diameter 2160
miles. Make intelligent use of fzero. (f) Find t∗ in the interval [0, T0/2] so that at time t∗, the spacecraft is equidistant from
the Moon and the Earth.

9.3 The Adams Methods

From the fundamental theorem of calculus, we have

y(tn+1) = y(tn) +

∫ tn+1

tn

y′(t)dt,

and so

y(tn+1) = y(tn) +

∫ tn+1

tn

f(t, y(t))dt.

The Adams methods are based on the idea of replacing the integrand with a polynomial that interpolates
f(t, y) at selected solution points (tj, yj). The kth order Adams-Bashforth method is explicit and uses the
current point (tn, yn) and k − 1 “historical” points. The kth order Adams-Moulton method is implicit and
uses the future point (tn+1, yn+1), the current point, and k − 2 historical points. The implementation and
properties of these two IVP solution frameworks are presented in this section.

9.3.1 Derivation of the Adams-Bashforth Methods

In the kth order Adams-Bashforth (AB) method, we set

yn+1 = yn +

∫ tn+1

tn

pk−1(t)dt, (9.4)

where pk−1(t) interpolates f(t, y) at (tn−j, yn−j), j = 0:k− 1. We are concerned with the first five members
of this family:

Order Interpolant AB Interpolation Points

1st constant (tn, fn)

2nd linear (tn, fn), (tn−1, fn−1)

3rd quadratic (tn, fn), (tn−1, fn−1), (tn−2, fn−2)

4th cubic (tn, fn), (tn−1, fn−1), (tn−2, fn−2), (tn−3, fn−3)

5th quartic (tn, fn), (tn−1, fn−1), (tn−2, fn−2), (tn−3, fn−3), (tn−3, fn−3)

If k = 1, then the one-point Newton-Cotes rule is applied and we get

yn+1 = yn + hnf(tn , yn) hn = tn+1 − tn.

Thus the first-order AB method is the Euler method.
In the second-order Adams-Bashforth method, we set

pk−1(t) = fn−1 +
fn − fn−1

hn−1
(t− tn−1)

in (9.4). This is the linear interpolant of (tn−1, fn−1) and (tn, fn), and we obtain
∫ tn+1

tn

f(t, y(t))dt ≈
∫ tn+1

tn

(
fn−1 +

fn − fn−1

hn−1
(t− tn−1)

)
dt

=
hn

2

(
hn + 2hn−1

hn−1
fn −

hn

hn−1
fn−1

)
.
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If hn = hn−1 = h, then from (9.4)

yn+1 = yn +
h

2
(3fn − fn−1) .

The derivation of higher-order AB methods is analogous. A table of the first five Adams-Bashforth
methods along with their respective local truncation errors is given in Figure 9.13. The derivation of the

Order Step LTE

1 yn+1 = yn + hfn
h2

2
y(2)(η)

2 yn+1 = yn + h
2

(3fn − fn−1)
5h3

12
y(3)(η)

3 yn+1 = yn + h
12

(23fn − 16fn−1 + 5fn−2)
3h4

8
y(4)(η)

4 yn+1 = yn + h
24

(55fn − 59fn−1 + 37fn−2 − 9fn−3)
251h5

720
y(5)(η)

5 yn+1 = yn + h
720

(1901fn − 2774fn−1 + 2616fn−2 − 1274fn−3 + 251fn−4)
95h6

288
y(6)(η)

Figure 9.13 Adams-Bashforth family

LTEs for the AB methods is a straightforward computation that involves the Newton-Cotes error:

y(tn+1)− yn =

∫ tn+1

tn

(f(t, yn(t)) − pk−1(t))dt.

9.3.2 Implementation

To facilitate experimentation with the AB method, here is a function that can carry out any of the methods
specified in Figure 9.13:

function [tnew,ynew,fnew] = ABstep(f,tc,yc,fvals,h,k)

% f is a handle that references a function of the form f(t,y)

% where t is a scalar and y is a column d-vector.

%

% yc is an approximate solution to y’(t) = f(t,y(t)) at t=tc.

%

% fvals is an d-by-k matrix where fvals(:,i) is an approximation

% to f(t,y) at t = tc +(1-i)h, i=1:k

%

% h = the time step.

% k = the order of the AB method used, 1<=k<=5.

% tnew = tc+h.

% ynew = an approximate solution at t=tnew.

% fnew = f(tnew,ynew).

if k==1, ynew = yc + h*fvals;

elseif k==2, ynew = yc + (h/2)*(fvals*[3;-1]);

elseif k==3, ynew = yc + (h/12)*(fvals*[23;-16;5]);

elseif k==4, ynew = yc + (h/24)*(fvals*[55;-59;37;-9]);

elseif k==5, ynew = yc + (h/720)*(fvals*[1901;-2774;2616;-1274;251]);

end

tnew = tc+h;

fnew = f(tnew,ynew);
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In the systems case, fval is a matrix and ynew is yc plus a matrix-vector product.
Note that k snapshots of f(t, y) are required, and this is why Adams methods are called multistep

methods. Because of this there is a “start-up” issue with the Adams-Bashforth method: How do we perform
the first step when there is no “history”? There are several approaches to this, and care must be taken to
ensure that the accuracy of the generated start-up values is consistent with the overall accuracy aims. For
a kth order Adams framework we use a kth order Runge-Kutta method, to get fj = f(tj , yj), j = 1:k − 1.
See the function ABStart. Using ABStart we are able to formulate a fixed-step Adams-Bashforth solver:

function [tvals,yvals] = FixedAB(f,t0,y0,h,k,n)

% Produces an approximate solution to the initial value problem

% y’(t) = f(t,y(t)), y(t0) = y0 using a strategy that is based upon a k-th order

% Adams-Bashforth method. Stepsize is fixed.

%

% f = handle that references the function f.

% t0 = initial time.

% y0 = initial condition vector.

% h = stepsize.

% k = order of method. (1<=k<=5).

% n = number of steps to be taken,

%

% tvals(j) = t0 + (j-1)h, j=1:n+1

% yvals(j,:) = approximate solution at t = tvals(j), j=1:n+1

[tvals,yvals,fvals] = ABStart(f,t0,y0,h,k);

tc = tvals(k);

yc = yvals(k,:)’;

fc = fvals(:,k);

for j=k:n

% Take a step and then update.

[tc,yc,fc] = ABstep(f,tc,yc,fvals,h,k);

tvals = [tvals tc];

yvals = [yvals; yc’];

fvals = [fc fvals(:,1:k-1)];

end

If we apply this algorithm to the model problem, y′ = −y, y(0) = 1. (See Figure 9.14.) Notice that for the
kth-order method, the error goes to zero as hk, where h = 1/n.
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Figure 9.14 kth order Adams-Bashforth error
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9.3.3 The Adams-Moulton Methods

The kth order Adams-Moulton (AM) method is just like the kth-order Adams-Bashforth method, but the
points at which we interpolate the integrand in

yn+1 = yn +

∫ tn+1

tn

pk−1(t)dt

are “shifted” one time step into the future. In particular, the kth-order Adams-Moulton method uses a
degree k − 1 interpolant of the points (tn+1−j , fn+1−j), j = 0:k− 1:

Order Interpolant AM Interpolation Points

1st constant (tn+1, fn+1)

2nd linear (tn+1, fn+1), (tn, fn)

3rd quadratic (tn+1, fn+1), (tn, fn), (tn−1, fn−1)

4th cubic (tn+1, fn+1), (tn, fn), (tn−1, fn−1), (tn−2, fn−2)

5th quartic (tn+1, fn+1), (tn, fn), (tn−1, fn−1), (tn−2, fn−2), (tn−3, fn−3)

For example, in the second-order Adams-Moulton method we set

pk−1(t) = fn +
fn+1 − fn

hn
(t− tn),

Order Step LTE

1 yn+1 = yn + hf(tn+1, yn+1) −h2

2
y(2)(η)

2 yn+1 = yn + h
2

(f(tn+1, yn+1) + fn) −h3

12
y(3)(η)

3 yn+1 = yn + h
12

(5f(tn+1, yn+1) + 8fn − fn−1) −h4

24
y(4)(η)

4 yn+1 = yn + h
24

(9f(tn+1, yn+1) + 19fn − 5fn−1 + fn−2) −19h5

720
y(5)(η)

5 yn+1 = yn + h
720

(251f(tn+1, yn+1) + 646fn − 264fn−1 + 106fn−2 − 19fn−3) −3h6

160
y(6)(η)

Figure 9.15 The Adams-Moulton methods

the linear interpolant of (tn, fn) and (tn+1, fn+1). We then obtain the approximation

∫ tn+1

tn

f(t, y(t))dt ≈
∫ tn+1

tn

(
fn +

fn+1 − fn

hn
(t− tn)

)
=

hn

2
(fn + fn+1),

and thus

yn+1 = yn +
hn

2
(f(t, yn+1) + fn).

As in the backward Euler method, which is just the first order Adams-Moulton method, yn+1 is specified
implicitly through a nonlinear equation. The higher-order Adams-Moulton methods are derived similarly,
and in Figure 9.15 we specify the first five members in the family.

The LTE coefficient for any AM method is slightly smaller than the LTE coefficients for the corresponding
AB method. Analogous to ABstep, we have
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function [tnew,ynew,fnew] = AMstep(f,tc,yc,fvals,h,k)

% Single step of the kth order Adams-Moulton method.

%

% f is a handle that references a function of the form f(t,y)

% where t is a scalar and y is a column d-vector.

%

% yc is an approximate solution to y’(t) = f(t,y(t)) at t=tc.

%

% fvals is an d-by-k matrix where fvals(:,i) is an approximation

% to f(t,y) at t = tc +(2-i)h, i=1:k.

%

% h is the time step.

%

% k is the order of the AM method used, 1<=k<=5.

%

% tnew=tc+h

% ynew is an approximate solution at t=tnew

% fnew = f(tnew,ynew).

if k==1, ynew = yc + h*fvals;

elseif k==2, ynew = yc + (h/2)*(fvals*[1;1]);

elseif k==3, ynew = yc + (h/12)*(fvals*[5;8;-1]);

elseif k==4, ynew = yc + (h/24)*(fvals*[9;19;-5;1]);

elseif k==5, ynew = yc + (h/720)*(fvals*[251;646;-264;106;-19]);

end

tnew = tc+h;

fnew = f(tnew,ynew);

We could discuss methods for the solution of the nonlinear F (z) = 0 that defines yn+1. However, we have
other plans for the Adams-Moulton methods that circumvent this problem.

9.3.4 The Predictor-Corrector Idea

A very important framework for solving IVPs results when we couple an Adams-Bashforth method with an
Adams-Moulton method of the same order. The idea is to predict yn+1 using an Adams-Bashforth method
and then to correct its value using the corresponding Adams-Moulton method. In the second-order case,
AB2 gives

y
(P)
n+1 = yn +

h

2
(3fn − fn−1),

which then is used in the right-hand side of the AM2 recipe to render

y
(C)
n+1 = yn +

h

2

(
f(tn+1 , y

(P)
n+1) + fn

)
.

For general order we have developed a function

[tnew,yPred,fPred,yCorr,fCorr] = PCstep(f,tc,yc,fvals,h,k)

that implements this idea. It involves a simple combination of ABStep and AMStep:

[tnew,yPred,fPred] = ABstep(f,tc,yc,fvals,h,k);

[tnew,yCorr,fCorr] = AMstep(f,tc,yc,[fPred fvals(:,1:k-1)],h,k);
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The repeated application of this function defines the fixed-step predictor-corrector framework:

function [tvals,yvals] = FixedPC(f,t0,y0,h,k,n)

% Produces an approximate solution to the initial value problem

% y’(t) = f(t,y(t)), y(t0) = y0 using a strategy that is based upon a k-th order

% Adams Predictor-Corrector framework. Stepsize is fixed.

%

% f = handle that references the function f.

% t0 = initial time.

% y0 = initial condition vector.

% h = stepsize.

% k = order of method. (1<=k<=5).

% n = number of steps to be taken,

%

% tvals(j) = t0 + (j-1)h, j=1:n+1

% yvals(j,:) = approximate solution at t = tvals(j), j=1:n+1

[tvals,yvals,fvals] = StartAB(f,t0,y0,h,k);

tc = tvals(k);

yc = yvals(:,k)’;

fc = fvals(:,k);

for j=k:n

% Take a step and then update.

[tc,yPred,fPred,yc,fc] = PCstep(f,tc,yc,fvals,h,k);

tvals = [tvals tc];

yvals = [yvals; yc’];

fvals = [fc fvals(:,1:k-1)];

end

The error associated with this method when applied to the model problem is given in Figure 9.16 on the
next page.
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Figure 9.16 kth Order predictor-corrector error

Problems

P9.3.1 Write functions
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[tvals,yvals] = AFixedAB(A,t0,y0,h,k,n)

[tvals,yvals] = AFixedAM(A,t0,y0,h,k,n)

that can be used to solve the IVP y′(t) = Ay(t), y(t0) = y0, where A is a d-by-d matrix. In AFixedAM a linear system will have
to be solved at each step. Get the factorization “out of the loop.”

P9.3.2 Use FixedAB and FixedPC to solve the IVP described in problem P9.2.3. Explore the connections between step size,

order, and the number of required function evaluations.

9.3.5 Stepsize Control

The idea behind error estimation in adaptive quadrature is to compute the integral in question in two ways,
and then accept or reject the better estimate based on the observed discrepancies. The predictor-corrector

framework presents us with a similar opportunity. The quality of y
(C)
n+1 can be estimated from |y(C)

n+1− y
(P)
n+1|.

If the error is too large, we can reduce the step. If the error is too small, then we can lengthen the step.
Properly handled, we can use this mechanism to integrate the IVP across the interval of interest with steps
that are as long as possible given a prescribed error tolerance. In this way we can compute the required
solution, more or less minimizing the number of f evaluations. The Matlab IVP solvers ode23 and ode45

are Runge-Kutta based and do just that. We develop a second-order adaptive step solver based on the
second-order AB and AM methods.

Do we accept y(C) as our chosen yn+1? If ∆ = |y(P)
n+1 − y

(C)
n+1| is small, then our intuition tells us that

y
(C)
n+1 is probably fairly good and worth accepting as our approximation to y(tn+1). If not, there are two

possibilities. We could refine y
(C)
n+1 through repeated application of the AM2 formula:

yn+1 = y
(C)
n+1

Repeat:

yn+1 = yn + h
2 (f(tn+1, yn+1) + fn)

A reasonable termination criterion might be to quit as soon as two successive iterates differ by a small amount.
The goal of the iteration is to produce a solution to the AM2 equation. Alternatively, we could halve h and
try another predict/correct step [i.e., produce an estimate yn+1 of y(tn +h/2)]. The latter approach is more
constructive because it addresses the primary reason for discrepancy between the predicted and corrected
value: an overly long step h.

To implement a practical step size control process, we need to develop a heuristic for estimating the error

in y
(c)
n+1 based on the discrepancy between it and y

(P)
n+1. The idea is to manipulate the LTE expressions

y(tn+1) = y
(P)
n+1 +

5

12
h3y(3)(η1), η1 ∈ [tn, tn + h]

y(tn+1) = y
(C)
n+1 −

1

12
h3y(3)(η2), η2 ∈ [tn, tn + h]

We make the assumption that y(3) does not vary much across [tn, tn + h]. Subtracting the first equation
from the second leads to approximation

|y(C)
n+1 − y

(P)
n+1| ≈

1

2
h3|y(3)(η)|, η ∈ [tn, tn + h]

and so

|y(C)
n+1 − y(tn+1)| ≈

1

6
|y(C)

n+1 − y
(P)
n+1|.

This leads to the following framework for a second-order predictor-corrector scheme:

y
(P)
n+1 = yn + h

2 (3fn − fn−1)

y
(C)
n+1 = yn + h

2

(
f(tn+1 , y

(P)
n+1 + fn

)

ε = 1
6 |y

(C)
n+1 − y

(P)
n+1|
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If ε is too big, then

reduce h and try again.

Else if ε is about right, then

set yn+1 = y
(C)
n+1 and keep h.

Else if ε is too small, then

set yn+1 = y
(C)
n+1 and increase h.

The definitions of “too big,” “about right,” and “too small” are central. Here is one approach. Suppose we
want the global error in the solution snapshots across [t0, tmax] to be less than δ. If it takes nmax steps to
integrate across [t0, tmax], then we can heuristically guarantee this if

nmax∑

n=1

LTEn ≤ δ.

Thus if hn is the length of the nth step, and

|LTEn| ≤
hnδ

tmax − t0
,

then
nmax∑

n=1

LTEn ≤
nmax∑

n=1

hnδ

tmax − t0
≤ δ.

This tells us when to accept a step. But if the estimated LTE is considerably smaller than the threshold,
say

ε ≤ 1

10

δh

tmax − t0
,

then it might be worth doubling h.
If the ε is too big, then our strategy is to halve h. But to carry out the predictor step with this step size,

we need f(tn − h/2, yn−1/2) where yn−1/2 is an estimate of y(tn − h/2). “Missing” values in in this setting
can be generated by interpolation or by using (for example) an appropriate Runge-Kutta estimate.

We mention that the Matlab IVP solver ode113 implements an Adams-Bashforth-Moulton predictor-
corrector framework.

Problems

P9.3.3 Derive an estimate for |y(C)
n+1 − y(tn+1)| for the third-, fourth- and fifth-order predictor-corrector pairs.

M-Files and References

Script Files

ShowTraj Shows family of solutions.
ShowEuler Illustrates Euler method.
ShowFixedEuler Plots error in fixed step Euler for y’=y, y(0)=1.
ShowTrunc Shows effect of truncation error.
EulerRoundoff Illustrates Euler in three-digit floating point.
ShowAB Illustrates FixedAB.
ShowPC Illustrates FixedPC.
ShowRK Illustrates FixedRK.
ShowMatIVPTools Illustrates ode23 and ode45 on a system.
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Function Files

FixedEuler Fixed step Euler method.
ABStart Gets starting values for Adams methods.
ABStep Adams-Bashforth step (order <= 5).
FixedAB Fixed step size Adams-Bashforth.
AMStep Adams-Moulton step (order <= 5).
PCStep AB-AM predictor-corrector Step (order <= 5).
FixedPC Fixed stepsize AB-AM predictor-corrector.
RKStep Runge-Kutta step (order <= 5).
FixedRK Fixed step size Runge-Kutta.
Kepler For solving two-body IVP.
f1 The f function for the model problem y’=y.
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