
CS419: Computer
Networks

Lecture 10, Part 3: Apr 13, 2005
Transport: TCP performance

CS419

TCP performance

We’ve seen how TCP “the protocol”
works
But there are a lot of tricks required to
make it work well

Indeed, the Internet nearly died an
early death because of bad TCP
performance problems

CS419

TCP performance

Making interactive TCP efficient for
low-bandwidth links
Filling the pipe for bulk-data
applications
Estimating round trip time (RTT)
Keeping the pipe full
Avoiding congestion

CS419

Interactive TCP

Interactive applications like telnet or RPC
send only occasional data
Data sent in both directions
Data often very small
Packet overhead is huge for small packets

<3% efficiency for a 1-byte data packet
This is bad for low-bandwidth links

CS419

Who cares about low-BW links?

Historically low-BW links were a
serious problem

As access links got faster, people
worried less about this

Ubiquitous computing over TCP/IP
wireless links makes this interesting
again

Low-power devices

CS419

Transmit versus wait

One basic engineering tradeoff is to
wait before transmitting
Wait for more data to send a bigger
packet
Hold off on the ACK so that data can
be piggybacked with the ACK
This is not an easy tradeoff to make---
you can only go so far with this
approach

CS419

TCP/IP header compression

A better approach is to “compress” the
TCP and IP headers (RFC 1144, 2507
- 2509)
Basic idea is to:

not transmit fields that don’t change
from packet to packet,
and to transmit only the deltas of
those fields that do change

CS419

TCP/IP compression
components

CS419

TCP header compression

How much compression can we get
out of TCP/IP
From 40 bytes to:

20 bytes?
10 bytes?
5 bytes?
2 bytes?

CS419

TCP/IP fields that don’t change

This cuts the
header in
half!

CS419

More compression

Total length not needed because link
layer transmits that (2 bytes)
IP checksum not needed because
there isn’t much left to checksum (2
more bytes)

CS419

Compression header

CS419

Compression issues

The main issue is how to deal with
errors
Once an error occurs, the
decompressor can’t recover unless a
new complete packet is sent
RFC1144 has a clever solution to this
. . .

CS419

When to schedule transmission

As we saw, TCP segment transmit
doesn’t have to correspond to app
send()

When should TCP send a fragment?
As soon as it gets data to send?
As soon as it has a packet’s worth to
send (MSS Max Segment Size)?
Not until some timer goes off?

CS419

When to schedule transmission

If TCP sends right away, it may send
many small packets
If TCP waits for a full MSS, it may
delay important data
If TCP waits for a timer, then bad
behavior can result

Lots of small packets get sent anyway
Silly Window Syndrome

CS419

Silly Window Syndrome

This is a nice situation:
(nice big packets, full pipe)

CS419

Silly Window Syndrome

Imagine this situation:
How could we get out of it???

CS419

Silly Window Syndrome

Small packets introduced into the loop
tend to stay in the loop
How do small packets get introduced
into the loop?

CS419

Silly Window Syndrome: Small
packet introduced

CS419

Silly Window Syndrome
prevention

Receiver and sender both wait until they
have larger segments to ACK or send
Receiver:

Receiver will not advertise a larger window
until the window can be increased by one
full-sized segment or
by half of the receiver’s buffer space
whichever is smaller

CS419

Silly Window Syndrome
prevention

Sender:
Waits to transmit until either a full
sized segment (MSS) can be sent or
at least half of the largest window ever
advertised by the receiver can be sent
or
it can send everything in the buffer

CS419

When to schedule transmission
(again)

App can force sender to send
immediately when data is available

Sockopt TCP_NODELAY
Otherwise, sender sends when a full
MSS is available
Or when a timer goes off

But with silly window constraints…

CS419

TCP: Retransmission and
Timeouts

Host A

Host B
ACK

Round-trip time (RTT)

ACK

Retransmission TimeOut (RTO)

Estimated RTT

Data1 Data2

Guard
Band

TCP uses an adaptive retransmission timeout value:
Congestion

Changes in Routing
RTT changes
frequently

Next few slides from Nick McKeown, Stanford

CS419

TCP: Retransmission and Timeouts

Picking the RTO is important:
Pick a values that’s too big and it will wait too long to
retransmit a packet,
Pick a value too small, and it will unnecessarily retransmit
packets.

The original algorithm for picking RTO:
1. EstimatedRTTk= α EstimatedRTTk-1 + (1 - α) SampleRTT
2. RTO = 2 * EstimatedRTT

Characteristics of the original algorithm:
Variance is assumed to be fixed.
But in practice, variance increases as congestion increases.

Determined
empirically

CS419

TCP: Retransmission and Timeouts

There will be some (unknown) distribution
of RTTs.
We are trying to estimate an RTO to
minimize the probability of a false timeout.

RTT

Pr
ob

ab
ili

ty

mean

variance

Load
(Amount of traffic
arriving to router)

A
ve

ra
ge

 Q
ue

ue
in

g
D

el
ay

Variance
grows rapidly

with load

Router queues grow when there is more
traffic, until they become unstable.
As load grows, variance of delay grows
rapidly.

CS419

TCP: Retransmission and Timeouts
Karn’s Algorithm

Retransmission

Wrong RTT
Sample

Host A Host B

Retransmission

Wrong RTT
Sample

Host A Host B

Problem:
How can we estimate RTT when packets are retransmitted?
Solution:
On retransmission, don’t update estimated RTT (and double RTO).

CS419

TCP: Retransmission and Timeouts

Newer Algorithm includes estimate of variance in RTT:

Difference = SampleRTT - EstimatedRTT
EstimatedRTTk = EstimatedRTTk-1 + (δ*Difference)
Deviation = Deviation + δ*(|Difference| - Deviation)

RTO = µ * EstimatedRTT + φ * Deviation
µ ≈ 1
φ ≈ 4

Same as
before

CS419

Fast implementation of this

SampleRTT -= (EstimatedRTT >> 3);
EstimatedRTT += SampleRTT;
if (SampleRTT < 0)

SampleRTT = -SampleRTT;
SampleRTT -= (Deviation >>3);
Deviation += SampleRTT;
TimeOut = (EstimatedRTT >> 3) + (Deviation >> 1);

CS419

Fast implementation of this

Note no floating point arithmetic, just adds,
subtract, and shift!

Also, TCP implementations use “header
prediction” to gain execution speed

SampleRTT -= (EstimatedRTT >> 3);
EstimatedRTT += SampleRTT;
if (SampleRTT < 0)

SampleRTT = -SampleRTT;
SampleRTT -= (Deviation >>3);
Deviation += SampleRTT;
TimeOut = (EstimatedRTT >> 3) + (Deviation >> 1);

CS419

Fast Retransmit

Even with all this fancy RTT
estimation, retransmits still tend to
over-estimate, and TCP can stall
while waiting for a time-out

Stall because pipe often bigger than
window!

This leads to the notion of “fast
retransmit”

CS419

Delayed connection

CS419

Delayed connection

CS419

Fast Retransmit

Receiver should send an ACK every
time it receives a packet, not only
when it gets something new to ACK

If same bytes are ACK’d, this is called
“duplicate ACK”

Sender interprets 3 duplicate ACKs as
a loss signal, retransmits right away

Don’t wait for timeout

CS419

Fast Retransmit

CS419

Next Lecture

TCP congestion control

