
CS419: Computer
Networks

Lecture 10, Part 2: Apr 11, 2005
Transport: TCP mechanics
(RFCs: 793, 1122, 1323, 2018, 2581)

CS419

TCP as seen from above the
socket

The TCP socket interface consists of:
Commands to start the connection
•connect(), listen(), accept()

Commands to send to and receive
from the connection
•read(), write()

Commands to end the connection
•close(),
• (but also read(), write()!)

CS419

TCP as a “marked” stream

Think of TCP as having “start-of-stream”
and an “end-of-stream” tags

EOS means “no more data will be sent”
And, “you got all the data that was sent”

CS419

TCP as a “marked” stream

The first read() that returns data implies
reception of “SOS”

TCP SYN can be thought of as “SOS”
close() generates the “EOS” (TCP FIN)
read()==0 signals reception of the “EOS”
A connection can end without an “EOS”

read()==-1 or write()==-1
In this case, some sent bytes may not have
been received

CS419

TCP “keepalive”

A TCP connection can stay “up” forever
even without sending any packets

Indeed, if one end crashes silently, the other
end won’t notice until it sends a packet
Sometime called a half-open connection

TCP implementations have a “keepalive”
option

Settable through sockopts()

CS419

TCP “keepalive”

Periodically sends a TCP packet with no
data
The other end responds with an ACK if it is
alive
If not, the other end is declared down, and a
pending read() is returned with -1
This is not part of the TCP spec per se
This can just as well be done at the
application layer

CS419

Some TCP issues we’ll look at

TCP uses a sliding window as we saw with
link protocols
However, TCP must contend with different
issues

Round trip may vary
• (so don’t know how best to fill the pipe)

The network may be congested
• (so may need to go even slower than receive

window allows)
Packets may not arrive in order
A TCP connection has to synchronize the
beginning and end (SOS and EOS)

CS419

TCP bytes and “segments”

Application process

Write
bytes

TCP
Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP
Receive buffer

…

… …

CS419

TCP Header (segment)

Source port Destination port

Sequence number

Acknowledgement

Advertised windowHdr len Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
FIN
RESET
PUSH
URG
ACK

CS419

Connection Establishment (with
Initial Sequence Numbers)

Connection Setup
3-way handshake

(Active)
Client

(Passive)
Server

Syn +ISNA

Syn + Ack +ISNB

Ack

CS419

Connection terminate

Connection establish is fairly
straightforward
Connection terminate is more
complex

Because both sides must fully close
One side can close while the other still
sends the last of its data
Or both can close at once

CS419

TCP Connection terminate

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end
system sends TCP
FIN control segment to
server

Step 2: server receives
FIN, replies with ACK.
Closes connection,
sends FIN.

client

FIN

server

ACK

ACK

FIN

close

close

closed

ti
m

ed
 w

ai
t

CS419

TCP Connection Terminate

client

FIN

server

ACK

ACK

FIN

close

close

closed

ti
m

ed
 w

ai
t

Step 3: client receives
FIN, replies with ACK.

Enters “timed wait” -
will respond with ACK
to received FINs

Step 4: server, receives
ACK. Connection
closed.

Note: with small
modification, can
handle simultaneous
FINs.

CS419

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED: data transfer!

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

/ACK

/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK
Timeout after two
segment lifetimes

FIN/ACK
ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open/SYN

SYN/

SYN+ACK/

Typical Client
Transitions

Typical Server
Transitions

CS419

TIME_WAIT state

On client, Wait 2 times Maximum Segment
Lifetime (2 MSL)

Provides protection against delayed
segments from an earlier incarnation of a
connection being interpreted as for a new
connection

Maximum time segment can exist in the
network before being discarded

Time-To-Live field in IP is expressed in
terms of hops not time
TCP estimates it as 2 minutes

CS419

TIME_WAIT state

During this time, combination of client
IP and port, server IP and port cannot
be reused

Some implementations say local port
cannot be reused at all while it is
involved in time wait state even to
establish a connection to different dest
IP/port combo

CS419

TCP advertised window (the
receive window)

In TCP, the receiver sends its receive
window to the sender

Note that both ends are both sender and
receiver
The receiver sends its receive window with
every ACK

The sender sets its send window to that of
the receive window
Therefore, we only really speak of one
window, the send window

CS419

TCP advertised window

Why does the TCP receiver need to
convey its receive window, whereas in
the link-layer sliding window, we didn’t
need that?

CS419

TCP advertised window

Why does the TCP receiver need to
convey its receive window, whereas in
the link-layer sliding window, we didn’t
need that?
ANS: because the TCP layer can
ACK data even though the application
hasn’t read it

CS419

TCP advertised window

CS419

TCP flow control

CS419

TCP retransmission mechanism
originally Go-back-N

Say sender sends bytes 1000 – 1499, in 5
100-byte packets
Receiver ACKs up to 1100
Sender knows that receiver missed packet
1100-1199, but doesn’t know about other
three packets
Sender “goes back” to 1100, and starts
retransmitting everything
It may therefore resend received packets

Lots of them, if the pipe is long and fat

CS419

Later TCP added Selective
Acknowledgement (SACK)

Use TCP option space during
ESTABLISHED state to send “hints” about
data received ahead of acknowledged data
TCP option that says SACK enabled on
SYN => “I am a SACK enabled sender,
receiver feel free to send selective ack info”
Normal ACK field still authoritative!
SACK usage is growing, but still not
universal

CS419

SACK Details

Format:
+--------+--------+

| Kind=5 | Length |
+--------+--------+--------+--------+
| Left Edge of 1st Block |
+--------+--------+--------+--------+
| Right Edge of 1st Block |
+--------+--------+--------+--------+
| |
/ . . . /
| |
+--------+--------+--------+--------+
| Left Edge of nth Block |
+--------+--------+--------+--------+
| Right Edge of nth Block |
+--------+--------+--------+--------+

❒ TCP option 5
❒ In 40 bytes of

option can
specify a max of
4 blocks

❒ If used with
other options
space reduced

❒ Ex. With
Timestamp option
(10 bytes), max 3
blocks

CS419

TCP sliding window

Window Size

Outstanding
Un-ack’d data

Data OK
to send

Data not OK
to send yet

Data ACK’d

CS419

Big Fat Pipes and TCP

TCP has a 32-bit sequence number
space, and a 16-bit window size
(65Kbytes)
At 1.2 Gbps:

the seq number can wrap in 28
seconds
The delay x BW at 100ms is 14.8MB

• 200 window’s worth!!!

CS419

TCP extensions for big fat
pipes (RFC 1323)

Timestamp extension
Allows the sender to put a 32-bit timestamp
in the header
Mainly for RTT estimation

• Receiver echoes it back, sender gets an accurate
RTT

But receiver can also use it to detect
wraparound

Window scaling extension
Negotiate to interpret window as power-of-2
factor (i.e., left-shift window X bits)

