
CS419: Computer 
Networks

Lecture 10, Part 1: April 6, 2005
Transport:  UDP/TCP demux and 
flow control / sequencing



CS419

Recall our protocol layers . . .



CS419

. . . and our protocol graph



CS419

IP gets the packet to the host
Really the interface

Now how do we get the packet from 
the interface to the right process?
Well, you’ve kinda seen this already, 
but lets cover again



CS419

TCP and UDP ports

The ports serve to “demux” the packet
Get it from the interface to the right 
process

SRC port DST port

checksum length

DATA

UDP Header



CS419

TCP and UDP ports

Some ports are “well-known”
HTTP is by default TCP port 80
DNS is UDP or TCP port 53
Etc.

Servers listen at these ports
Other ports are dynamically assigned

Clients usually dynamically assign 
ports



CS419

UDP/TCP application process 
selection

Unicast application process is selected by the 
complete 5-tuple, consisting of:

Source and Dest IP address
Source and Dest port
IP protocol
Ex: an FTP server may have concurrent transfers to 
the same client.  Only the source port will differ.

Multicast application process is selected by a 3-
tuple: Dest IP address and UDP port, and IP 
protocol

Because it is multicast, UDP may select multiple 
processes



CS419

Typical server incoming 
connection processing

Client  Host Server  Host

Listening 
Process

Client 
Process1

SA=C, DA=S, P=TCP, 
SP=5000, DP=23

TCPTCP



CS419

Typical server incoming 
connection processing

Client  Host Server  Host

Listening 
Process

Client 
Process1

SA=C, DA=S, P=TCP, 
SP=5000, DP=23

Server 
Process1

TCP
fork

TCP



CS419

Typical server incoming 
connection processing

Client  Host Server  Host

Listening 
Process

Client 
Process1

SA=C, DA=S, P=TCP, 
SP=5000, DP=23

Server 
Process1

TCP
fork

Client 
Process2

SA=C, DA=S, P=TCP, 
SP=5001, DP=23

TCP



CS419

Typical server incoming 
connection processing

Client  Host Server  Host

Listening 
Process

Client 
Process1

SA=C, DA=S, P=TCP, 
SP=5000, DP=23

Server 
Process1

TCP
fork

Client 
Process2

SA=C, DA=S, P=TCP, 
SP=5001, DP=23

Server 
Process1

forkTCP



CS419

UDP and TCP service

UDP is connectionless packet transport 
service

Like IP, packets can be lost, mis-ordered, 
duplicated

A receive() of X bytes corresponds to a 
previous send() of X bytes

And a corresponding packet of X bytes
• (Ignoring packet loss or other errors like not 

providing enough receive buffer)
If sending app sends, but receiving app 
doesn’t receive, packet will be lost

Even if no packets are lost in the network!



CS419

UDP packet loss



CS419

UDP and TCP service

TCP is a reliable byte-stream transport 
service

As long as the TCP connection is 
established, bytes arrive in the order they 
were sent

But, a send() of X bytes doesn’t imply a 
receive() of X bytes

Sender can send 500 bytes, and receiver 
can read 1 byte 500 times (and it could have 
been transmitted as 2 250-byte packets)
And vice versa

TCP provides flow control



CS419

TCP flow control



CS419

Stop-and-wait

Before looking at TCP in its full glory, 
lets look at simpler sequencing / flow 
control algorithms
Stop-and-wait is about as simple as it 
can get
Sender sends packet, waits for ack, 
sends another packet, . . .
Receiver receives packet, acks it . . .



CS419

Stop-and-wait



CS419

Stop-and-wait

Receiver only needs one packet’s 
worth of receive buffer

Only send ACK after received packet 
is processed

Sender only needs one packet’s worth 
of send buffer

Save packet until get ACK, then save 
the next packet



CS419

Even stop-and-wait not quite 
this simple!



CS419

Stop-and-wait requires a 1-bit 
sequence number space

Works correctly only if 
packets cannot be 
reordered in transit



CS419

Problem with stop-and-wait

Fine on a short-skinny pipe
Low bandwidth, low distance

Wasteful on a long-fat pipe
High delay x bandwidth product

1.5 Mbps link, 45ms round-trip delay
Approx. 8KB BW x delay

Eight 1KB packets can be sent in one RTT, 
but stop-and-wait only sends one packet in 
one RTT



CS419

Sliding window

Sender can send multiple bytes before 
getting an ACK for the first byte

Number of bytes is the send window
Sender must buffer these bytes in case it 
has to retransmit

Receiver can buffer multiple bytes before 
delivering any to the application

Number of bytes is the receive window
Receiver must buffer these bytes in case 
application doesn’t read them on time
Or in case some bytes not received



CS419

Sliding window



CS419

Send and receive window sizes

Send window should be big enough to fill 
the pipe
Receive window can (in theory) be smaller 
than send window

As long as receiver can keep up with sender
But packet loss can result in more 
retransmits than necessary

• So you really don’t want to do this…
No point in making receive window bigger 
than send window

Unless congestion in network a concern



CS419

Sliding window examples



CS419

Sliding window examples

Normal operation
Receive app delays reading
Packet lost
Cumulative ACK
NACK
Selective ACK



CS419

Seq number space must be at 
least two times window size


