MultisetInsertion Sort With Multisets
From Coq Require Import Strings.String.
From VFA Require Import Perm.
From VFA Require Import Sort.
Require Export FunctionalExtensionality.
From VFA Require Import Perm.
From VFA Require Import Sort.
Require Export FunctionalExtensionality.
In this chapter we will be using natural numbers for two different
purposes: the values in the lists that we sort, and the
multiplicity (number of times occurring) of those values. To keep
things straight, we'll use the value type for values, and nat
for multiplicities.
Definition value := nat.
Definition multiset := value → nat.
Definition multiset := value → nat.
Just like sets, multisets have operators for union, for the
empty multiset, and the multiset with just a single element.
Definition empty : multiset :=
fun x ⇒ 0.
Definition union (a b : multiset) : multiset :=
fun x ⇒ a x + b x.
Definition singleton (v: value) : multiset :=
fun x ⇒ if x =? v then 1 else 0.
fun x ⇒ 0.
Definition union (a b : multiset) : multiset :=
fun x ⇒ a x + b x.
Definition singleton (v: value) : multiset :=
fun x ⇒ if x =? v then 1 else 0.
Exercise: 1 star, standard (union_assoc)
Since multisets are represented as functions, to prove that one multiset equals another we must use the axiom of functional extensionality.
Lemma union_assoc: ∀a b c : multiset, (* assoc stands for "associative" *)
union a (union b c) = union (union a b) c.
Proof.
intros.
extensionality x.
(* FILL IN HERE *) Admitted.
☐
union a (union b c) = union (union a b) c.
Proof.
intros.
extensionality x.
(* FILL IN HERE *) Admitted.
Lemma union_comm: ∀a b : multiset, (* comm stands for "commutative" *)
union a b = union b a.
Proof.
(* FILL IN HERE *) Admitted.
☐
union a b = union b a.
Proof.
(* FILL IN HERE *) Admitted.
Fixpoint contents (al: list value) : multiset :=
match al with
| a :: bl ⇒ union (singleton a) (contents bl)
| nil ⇒ empty
end.
match al with
| a :: bl ⇒ union (singleton a) (contents bl)
| nil ⇒ empty
end.
Recall the insertion-sort program from Sort.v. Note that it
handles lists with repeated elements just fine.
Example sort_pi: sort [3;1;4;1;5;9;2;6;5;3;5] = [1;1;2;3;3;4;5;5;5;6;9].
Example sort_pi_same_contents:
contents (sort [3;1;4;1;5;9;2;6;5;3;5]) = contents [3;1;4;1;5;9;2;6;5;3;5].
Proof.
extensionality x.
repeat (destruct x; try reflexivity).
(* Why does this work? Try it step by step, without repeat *)
Qed.
Proof. simpl. reflexivity. Qed.
Example sort_pi_same_contents:
contents (sort [3;1;4;1;5;9;2;6;5;3;5]) = contents [3;1;4;1;5;9;2;6;5;3;5].
Proof.
extensionality x.
repeat (destruct x; try reflexivity).
(* Why does this work? Try it step by step, without repeat *)
Qed.
Correctness
Definition is_a_sorting_algorithm' (f: list nat → list nat) :=
∀al, contents al = contents (f al) ∧ sorted (f al).
∀al, contents al = contents (f al) ∧ sorted (f al).
Exercise: 3 stars, standard (insert_contents)
First, prove the auxiliary lemma insert_contents, which will be useful for proving sort_contents below. Your proof will be by induction. You do not need to use extensionality, but do make use of the lemmas about union you proved above.
Lemma insert_contents: ∀x l, contents (x::l) = contents (insert x l).
Proof.
(* FILL IN HERE *) Admitted.
☐
Proof.
(* FILL IN HERE *) Admitted.
Theorem sort_contents: ∀l, contents l = contents (sort l).
(* FILL IN HERE *) Admitted.
☐
(* FILL IN HERE *) Admitted.
Theorem insertion_sort_correct:
is_a_sorting_algorithm' sort.
Proof.
split. apply sort_contents. apply sort_sorted.
Qed.
is_a_sorting_algorithm' sort.
Proof.
split. apply sort_contents. apply sort_sorted.
Qed.
Exercise: 1 star, standard, optional (permutations_vs_multiset)
Compare your proofs of insert_perm, sort_perm with your proofs of insert_contents, sort_contents. Which proofs are simpler?- easier with permutations,
- easier with multisets
- about the same.
- permutations or
- multisets
(* Do not modify the following line: *)
Definition manual_grade_for_permutations_vs_multiset : option (nat*string) := None.
☐
Definition manual_grade_for_permutations_vs_multiset : option (nat*string) := None.
Permutations and Multisets
Exercise: 3 stars, standard (perm_contents)
The forward direction is easy, by induction on the evidence for Permutation:
Lemma perm_contents:
∀al bl : list nat,
Permutation al bl → contents al = contents bl.
(* FILL IN HERE *) Admitted.
☐
∀al bl : list nat,
Permutation al bl → contents al = contents bl.
(* FILL IN HERE *) Admitted.
Fixpoint list_delete (al: list value) (v: value) :=
match al with
| x::bl ⇒ if x =? v then bl else x :: list_delete bl v
| nil ⇒ nil
end.
Definition multiset_delete (m: multiset) (v: value) :=
fun x ⇒ if x =? v then pred(m x) else m x.
match al with
| x::bl ⇒ if x =? v then bl else x :: list_delete bl v
| nil ⇒ nil
end.
Definition multiset_delete (m: multiset) (v: value) :=
fun x ⇒ if x =? v then pred(m x) else m x.
Lemma delete_contents:
∀v al,
contents (list_delete al v) = multiset_delete (contents al) v.
Proof.
intros.
extensionality x.
induction al.
simpl. unfold empty, multiset_delete.
bdestruct (x =? v); auto.
simpl.
bdestruct (a =? v).
(* FILL IN HERE *) Admitted.
☐
∀v al,
contents (list_delete al v) = multiset_delete (contents al) v.
Proof.
intros.
extensionality x.
induction al.
simpl. unfold empty, multiset_delete.
bdestruct (x =? v); auto.
simpl.
bdestruct (a =? v).
(* FILL IN HERE *) Admitted.
Lemma contents_perm_aux:
∀v b, empty = union (singleton v) b → False.
Proof.
(* FILL IN HERE *) Admitted.
☐
∀v b, empty = union (singleton v) b → False.
Proof.
(* FILL IN HERE *) Admitted.
Lemma contents_in:
∀(a: value) (bl: list value) , contents bl a > 0 → In a bl.
Proof.
(* FILL IN HERE *) Admitted.
☐
∀(a: value) (bl: list value) , contents bl a > 0 → In a bl.
Proof.
(* FILL IN HERE *) Admitted.
Lemma in_perm_delete:
∀a bl,
In a bl → Permutation (a :: list_delete bl a) bl.
Proof.
(* FILL IN HERE *) Admitted.
☐
∀a bl,
In a bl → Permutation (a :: list_delete bl a) bl.
Proof.
(* FILL IN HERE *) Admitted.
Lemma contents_perm:
∀al bl, contents al = contents bl → Permutation al bl.
Proof.
induction al; destruct bl; intro.
auto.
simpl in H.
apply contents_perm_aux in H. contradiction.
simpl in H. symmetry in H.
apply contents_perm_aux in H. contradiction.
specialize (IHal (list_delete (v :: bl) a)).
remember (v::bl) as cl.
clear v bl Heqcl.
∀al bl, contents al = contents bl → Permutation al bl.
Proof.
induction al; destruct bl; intro.
auto.
simpl in H.
apply contents_perm_aux in H. contradiction.
simpl in H. symmetry in H.
apply contents_perm_aux in H. contradiction.
specialize (IHal (list_delete (v :: bl) a)).
remember (v::bl) as cl.
clear v bl Heqcl.
From this point on, you don't need induction.
Use the lemmas perm_trans, delete_contents,
in_perm_delete, contents_in. At certain points
you'll need to unfold the definitions of
multiset_delete, union, singleton.
(* FILL IN HERE *) Admitted.
☐
Theorem same_contents_iff_perm:
∀al bl, contents al = contents bl ↔ Permutation al bl.
Proof.
intros. split. apply contents_perm. apply perm_contents.
Qed.
∀al bl, contents al = contents bl ↔ Permutation al bl.
Proof.
intros. split. apply contents_perm. apply perm_contents.
Qed.
Therefore, it doesn't matter whether you prove your sorting
algorithm using the Permutations method or the multiset method.
Corollary sort_specifications_equivalent:
∀sort, is_a_sorting_algorithm sort ↔ is_a_sorting_algorithm' sort.
Proof.
unfold is_a_sorting_algorithm, is_a_sorting_algorithm'.
split; intros;
destruct (H al); split; auto;
apply same_contents_iff_perm; auto.
Qed.
(* Thu May 2 14:47:51 EDT 2019 *)
∀sort, is_a_sorting_algorithm sort ↔ is_a_sorting_algorithm' sort.
Proof.
unfold is_a_sorting_algorithm, is_a_sorting_algorithm'.
split; intros;
destruct (H al); split; auto;
apply same_contents_iff_perm; auto.
Qed.
(* Thu May 2 14:47:51 EDT 2019 *)