TypecheckingA Typechecker for STLC
Set Warnings "-notation-overridden,-parsing".
From Coq Require Import Bool.Bool.
From PLF Require Import Maps.
From PLF Require Import Smallstep.
From PLF Require Import Stlc.
From PLF Require MoreStlc.
Module STLCTypes.
Export STLC.
From Coq Require Import Bool.Bool.
From PLF Require Import Maps.
From PLF Require Import Smallstep.
From PLF Require Import Stlc.
From PLF Require MoreStlc.
Module STLCTypes.
Export STLC.
Fixpoint eqb_ty (T1 T2:ty) : bool :=
match T1,T2 with
| Bool, Bool ⇒
true
| Arrow T11 T12, Arrow T21 T22 ⇒
andb (eqb_ty T11 T21) (eqb_ty T12 T22)
| _,_ ⇒
false
end.
match T1,T2 with
| Bool, Bool ⇒
true
| Arrow T11 T12, Arrow T21 T22 ⇒
andb (eqb_ty T11 T21) (eqb_ty T12 T22)
| _,_ ⇒
false
end.
... and we need to establish the usual two-way connection between
the boolean result returned by eqb_ty and the logical
proposition that its inputs are equal.
Lemma eqb_ty_refl : ∀T1,
eqb_ty T1 T1 = true.
Lemma eqb_ty__eq : ∀T1 T2,
eqb_ty T1 T2 = true → T1 = T2.
eqb_ty T1 T1 = true.
Proof.
intros T1. induction T1; simpl.
reflexivity.
rewrite IHT1_1. rewrite IHT1_2. reflexivity. Qed.
intros T1. induction T1; simpl.
reflexivity.
rewrite IHT1_1. rewrite IHT1_2. reflexivity. Qed.
Lemma eqb_ty__eq : ∀T1 T2,
eqb_ty T1 T2 = true → T1 = T2.
Proof with auto.
intros T1. induction T1; intros T2 Hbeq; destruct T2; inversion Hbeq.
- (* T1=Bool *)
reflexivity.
- (* T1=Arrow T1_1 T1_2 *)
rewrite andb_true_iff in H0. inversion H0 as [Hbeq1 Hbeq2].
apply IHT1_1 in Hbeq1. apply IHT1_2 in Hbeq2. subst... Qed.
End STLCTypes.intros T1. induction T1; intros T2 Hbeq; destruct T2; inversion Hbeq.
- (* T1=Bool *)
reflexivity.
- (* T1=Arrow T1_1 T1_2 *)
rewrite andb_true_iff in H0. inversion H0 as [Hbeq1 Hbeq2].
apply IHT1_1 in Hbeq1. apply IHT1_2 in Hbeq2. subst... Qed.
The Typechecker
Module FirstTry.
Import STLCTypes.
Fixpoint type_check (Gamma : context) (t : tm) : option ty :=
match t with
| var x ⇒
Gamma x
| abs x T11 t12 ⇒
match type_check (update Gamma x T11) t12 with
| Some T12 ⇒ Some (Arrow T11 T12)
| _ ⇒ None
end
| app t1 t2 ⇒
match type_check Gamma t1, type_check Gamma t2 with
| Some (Arrow T11 T12),Some T2 ⇒
if eqb_ty T11 T2 then Some T12 else None
| _,_ ⇒ None
end
| tru ⇒
Some Bool
| fls ⇒
Some Bool
| test guard t f ⇒
match type_check Gamma guard with
| Some Bool ⇒
match type_check Gamma t, type_check Gamma f with
| Some T1, Some T2 ⇒
if eqb_ty T1 T2 then Some T1 else None
| _,_ ⇒ None
end
| _ ⇒ None
end
end.
End FirstTry.
Import STLCTypes.
Fixpoint type_check (Gamma : context) (t : tm) : option ty :=
match t with
| var x ⇒
Gamma x
| abs x T11 t12 ⇒
match type_check (update Gamma x T11) t12 with
| Some T12 ⇒ Some (Arrow T11 T12)
| _ ⇒ None
end
| app t1 t2 ⇒
match type_check Gamma t1, type_check Gamma t2 with
| Some (Arrow T11 T12),Some T2 ⇒
if eqb_ty T11 T2 then Some T12 else None
| _,_ ⇒ None
end
| tru ⇒
Some Bool
| fls ⇒
Some Bool
| test guard t f ⇒
match type_check Gamma guard with
| Some Bool ⇒
match type_check Gamma t, type_check Gamma f with
| Some T1, Some T2 ⇒
if eqb_ty T1 T2 then Some T1 else None
| _,_ ⇒ None
end
| _ ⇒ None
end
end.
End FirstTry.
Digression: Improving the Notation
Notation " x <- e1 ;; e2" := (match e1 with
| Some x ⇒ e2
| None ⇒ None
end)
(right associativity, at level 60).
| Some x ⇒ e2
| None ⇒ None
end)
(right associativity, at level 60).
Second, we define return and fail as synonyms for Some and
None:
Notation " 'return' e "
:= (Some e) (at level 60).
Notation " 'fail' "
:= None.
Module STLCChecker.
Import STLCTypes.
:= (Some e) (at level 60).
Notation " 'fail' "
:= None.
Module STLCChecker.
Import STLCTypes.
Now we can write the same type-checking function in a more
imperative-looking style using these notations.
Fixpoint type_check (Gamma : context) (t : tm) : option ty :=
match t with
| var x ⇒
match Gamma x with
| Some T ⇒ return T
| None ⇒ fail
end
| abs x T11 t12 ⇒
T12 <- type_check (update Gamma x T11) t12 ;;
return (Arrow T11 T12)
| app t1 t2 ⇒
T1 <- type_check Gamma t1 ;;
T2 <- type_check Gamma t2 ;;
match T1 with
| Arrow T11 T12 ⇒
if eqb_ty T11 T2 then return T12 else fail
| _ ⇒ fail
end
| tru ⇒
return Bool
| fls ⇒
return Bool
| test guard t1 t2 ⇒
Tguard <- type_check Gamma guard ;;
T1 <- type_check Gamma t1 ;;
T2 <- type_check Gamma t2 ;;
match Tguard with
| Bool ⇒
if eqb_ty T1 T2 then return T1 else fail
| _ ⇒ fail
end
end.
match t with
| var x ⇒
match Gamma x with
| Some T ⇒ return T
| None ⇒ fail
end
| abs x T11 t12 ⇒
T12 <- type_check (update Gamma x T11) t12 ;;
return (Arrow T11 T12)
| app t1 t2 ⇒
T1 <- type_check Gamma t1 ;;
T2 <- type_check Gamma t2 ;;
match T1 with
| Arrow T11 T12 ⇒
if eqb_ty T11 T2 then return T12 else fail
| _ ⇒ fail
end
| tru ⇒
return Bool
| fls ⇒
return Bool
| test guard t1 t2 ⇒
Tguard <- type_check Gamma guard ;;
T1 <- type_check Gamma t1 ;;
T2 <- type_check Gamma t2 ;;
match Tguard with
| Bool ⇒
if eqb_ty T1 T2 then return T1 else fail
| _ ⇒ fail
end
end.
Properties
Theorem type_checking_sound : ∀Gamma t T,
type_check Gamma t = Some T → has_type Gamma t T.
Theorem type_checking_complete : ∀Gamma t T,
has_type Gamma t T → type_check Gamma t = Some T.
End STLCChecker.
type_check Gamma t = Some T → has_type Gamma t T.
Proof with eauto.
intros Gamma t. generalize dependent Gamma.
induction t; intros Gamma T Htc; inversion Htc.
- (* var *) rename s into x. destruct (Gamma x) eqn:H.
rename t into T'. inversion H0. subst. eauto. solve_by_invert.
- (* app *)
remember (type_check Gamma t1) as TO1.
destruct TO1 as [T1|]; try solve_by_invert;
destruct T1 as [|T11 T12]; try solve_by_invert;
remember (type_check Gamma t2) as TO2;
destruct TO2 as [T2|]; try solve_by_invert.
destruct (eqb_ty T11 T2) eqn: Heqb.
apply eqb_ty__eq in Heqb.
inversion H0; subst...
inversion H0.
- (* abs *)
rename s into x. rename t into T1.
remember (update Gamma x T1) as G'.
remember (type_check G' t0) as TO2.
destruct TO2; try solve_by_invert.
inversion H0; subst...
- (* tru *) eauto.
- (* fls *) eauto.
- (* test *)
remember (type_check Gamma t1) as TOc.
remember (type_check Gamma t2) as TO1.
remember (type_check Gamma t3) as TO2.
destruct TOc as [Tc|]; try solve_by_invert.
destruct Tc; try solve_by_invert;
destruct TO1 as [T1|]; try solve_by_invert;
destruct TO2 as [T2|]; try solve_by_invert.
destruct (eqb_ty T1 T2) eqn:Heqb;
try solve_by_invert.
apply eqb_ty__eq in Heqb.
inversion H0. subst. subst...
Qed.
intros Gamma t. generalize dependent Gamma.
induction t; intros Gamma T Htc; inversion Htc.
- (* var *) rename s into x. destruct (Gamma x) eqn:H.
rename t into T'. inversion H0. subst. eauto. solve_by_invert.
- (* app *)
remember (type_check Gamma t1) as TO1.
destruct TO1 as [T1|]; try solve_by_invert;
destruct T1 as [|T11 T12]; try solve_by_invert;
remember (type_check Gamma t2) as TO2;
destruct TO2 as [T2|]; try solve_by_invert.
destruct (eqb_ty T11 T2) eqn: Heqb.
apply eqb_ty__eq in Heqb.
inversion H0; subst...
inversion H0.
- (* abs *)
rename s into x. rename t into T1.
remember (update Gamma x T1) as G'.
remember (type_check G' t0) as TO2.
destruct TO2; try solve_by_invert.
inversion H0; subst...
- (* tru *) eauto.
- (* fls *) eauto.
- (* test *)
remember (type_check Gamma t1) as TOc.
remember (type_check Gamma t2) as TO1.
remember (type_check Gamma t3) as TO2.
destruct TOc as [Tc|]; try solve_by_invert.
destruct Tc; try solve_by_invert;
destruct TO1 as [T1|]; try solve_by_invert;
destruct TO2 as [T2|]; try solve_by_invert.
destruct (eqb_ty T1 T2) eqn:Heqb;
try solve_by_invert.
apply eqb_ty__eq in Heqb.
inversion H0. subst. subst...
Qed.
Theorem type_checking_complete : ∀Gamma t T,
has_type Gamma t T → type_check Gamma t = Some T.
Proof with auto.
intros Gamma t T Hty.
induction Hty; simpl.
- (* T_Var *) destruct (Gamma x0) eqn:H0; assumption.
- (* T_Abs *) rewrite IHHty...
- (* T_App *)
rewrite IHHty1. rewrite IHHty2.
rewrite (eqb_ty_refl T11)...
- (* T_True *) eauto.
- (* T_False *) eauto.
- (* T_If *) rewrite IHHty1. rewrite IHHty2.
rewrite IHHty3. rewrite (eqb_ty_refl T)...
Qed.
intros Gamma t T Hty.
induction Hty; simpl.
- (* T_Var *) destruct (Gamma x0) eqn:H0; assumption.
- (* T_Abs *) rewrite IHHty...
- (* T_App *)
rewrite IHHty1. rewrite IHHty2.
rewrite (eqb_ty_refl T11)...
- (* T_True *) eauto.
- (* T_False *) eauto.
- (* T_If *) rewrite IHHty1. rewrite IHHty2.
rewrite IHHty3. rewrite (eqb_ty_refl T)...
Qed.
End STLCChecker.
Exercises
Exercise: 5 stars, standard (typechecker_extensions)
In this exercise we'll extend the typechecker to deal with the extended features discussed in chapter MoreStlc. Your job is to fill in the omitted cases in the following.
Module TypecheckerExtensions.
(* Do not modify the following line: *)
Definition manual_grade_for_type_checking_sound : option (nat*string) := None.
(* Do not modify the following line: *)
Definition manual_grade_for_type_checking_complete : option (nat*string) := None.
Import MoreStlc.
Import STLCExtended.
Fixpoint eqb_ty (T1 T2 : ty) : bool :=
match T1,T2 with
| Nat, Nat ⇒
true
| Unit, Unit ⇒
true
| Arrow T11 T12, Arrow T21 T22 ⇒
andb (eqb_ty T11 T21) (eqb_ty T12 T22)
| Prod T11 T12, Prod T21 T22 ⇒
andb (eqb_ty T11 T21) (eqb_ty T12 T22)
| Sum T11 T12, Sum T21 T22 ⇒
andb (eqb_ty T11 T21) (eqb_ty T12 T22)
| List T11, List T21 ⇒
eqb_ty T11 T21
| _,_ ⇒
false
end.
Lemma eqb_ty_refl : ∀T1,
eqb_ty T1 T1 = true.
Proof.
intros T1.
induction T1; simpl;
try reflexivity;
try (rewrite IHT1_1; rewrite IHT1_2; reflexivity);
try (rewrite IHT1; reflexivity). Qed.
Lemma eqb_ty__eq : ∀T1 T2,
eqb_ty T1 T2 = true → T1 = T2.
Proof.
intros T1.
induction T1; intros T2 Hbeq; destruct T2; inversion Hbeq;
try reflexivity;
try (rewrite andb_true_iff in H0; inversion H0 as [Hbeq1 Hbeq2];
apply IHT1_1 in Hbeq1; apply IHT1_2 in Hbeq2; subst; auto);
try (apply IHT1 in Hbeq; subst; auto).
Qed.
Fixpoint type_check (Gamma : context) (t : tm) : option ty :=
match t with
| var x ⇒
match Gamma x with
| Some T ⇒ return T
| None ⇒ fail
end
| abs x1 T1 t2 ⇒
T2 <- type_check (update Gamma x1 T1) t2 ;;
return (Arrow T1 T2)
| app t1 t2 ⇒
T1 <- type_check Gamma t1 ;;
T2 <- type_check Gamma t2 ;;
match T1 with
| Arrow T11 T12 ⇒
if eqb_ty T11 T2 then return T12 else fail
| _ ⇒ fail
end
| const _ ⇒
return Nat
| scc t1 ⇒
T1 <- type_check Gamma t1 ;;
match T1 with
| Nat ⇒ return Nat
| _ ⇒ fail
end
| prd t1 ⇒
T1 <- type_check Gamma t1 ;;
match T1 with
| Nat ⇒ return Nat
| _ ⇒ fail
end
| mlt t1 t2 ⇒
T1 <- type_check Gamma t1 ;;
T2 <- type_check Gamma t2 ;;
match T1, T2 with
| Nat, Nat ⇒ return Nat
| _,_ ⇒ fail
end
| test0 guard t f ⇒
Tguard <- type_check Gamma guard ;;
T1 <- type_check Gamma t ;;
T2 <- type_check Gamma f ;;
match Tguard with
| Nat ⇒ if eqb_ty T1 T2 then return T1 else fail
| _ ⇒ fail
end
(* Complete the following cases. *)
(* sums *)
(* FILL IN HERE *)
(* lists (the tlcase is given for free) *)
(* FILL IN HERE *)
| tlcase t0 t1 x21 x22 t2 ⇒
match type_check Gamma t0 with
| Some (List T) ⇒
match type_check Gamma t1,
type_check (update (update Gamma x22 (List T)) x21 T) t2 with
| Some T1', Some T2' ⇒
if eqb_ty T1' T2' then Some T1' else None
| _,_ ⇒ None
end
| _ ⇒ None
end
(* unit *)
(* FILL IN HERE *)
(* pairs *)
(* FILL IN HERE *)
(* let *)
(* FILL IN HERE *)
(* fix *)
(* FILL IN HERE *)
| _ ⇒ None (* ... and delete this line when you complete the exercise. *)
end.
(* Do not modify the following line: *)
Definition manual_grade_for_type_checking_sound : option (nat*string) := None.
(* Do not modify the following line: *)
Definition manual_grade_for_type_checking_complete : option (nat*string) := None.
Import MoreStlc.
Import STLCExtended.
Fixpoint eqb_ty (T1 T2 : ty) : bool :=
match T1,T2 with
| Nat, Nat ⇒
true
| Unit, Unit ⇒
true
| Arrow T11 T12, Arrow T21 T22 ⇒
andb (eqb_ty T11 T21) (eqb_ty T12 T22)
| Prod T11 T12, Prod T21 T22 ⇒
andb (eqb_ty T11 T21) (eqb_ty T12 T22)
| Sum T11 T12, Sum T21 T22 ⇒
andb (eqb_ty T11 T21) (eqb_ty T12 T22)
| List T11, List T21 ⇒
eqb_ty T11 T21
| _,_ ⇒
false
end.
Lemma eqb_ty_refl : ∀T1,
eqb_ty T1 T1 = true.
Proof.
intros T1.
induction T1; simpl;
try reflexivity;
try (rewrite IHT1_1; rewrite IHT1_2; reflexivity);
try (rewrite IHT1; reflexivity). Qed.
Lemma eqb_ty__eq : ∀T1 T2,
eqb_ty T1 T2 = true → T1 = T2.
Proof.
intros T1.
induction T1; intros T2 Hbeq; destruct T2; inversion Hbeq;
try reflexivity;
try (rewrite andb_true_iff in H0; inversion H0 as [Hbeq1 Hbeq2];
apply IHT1_1 in Hbeq1; apply IHT1_2 in Hbeq2; subst; auto);
try (apply IHT1 in Hbeq; subst; auto).
Qed.
Fixpoint type_check (Gamma : context) (t : tm) : option ty :=
match t with
| var x ⇒
match Gamma x with
| Some T ⇒ return T
| None ⇒ fail
end
| abs x1 T1 t2 ⇒
T2 <- type_check (update Gamma x1 T1) t2 ;;
return (Arrow T1 T2)
| app t1 t2 ⇒
T1 <- type_check Gamma t1 ;;
T2 <- type_check Gamma t2 ;;
match T1 with
| Arrow T11 T12 ⇒
if eqb_ty T11 T2 then return T12 else fail
| _ ⇒ fail
end
| const _ ⇒
return Nat
| scc t1 ⇒
T1 <- type_check Gamma t1 ;;
match T1 with
| Nat ⇒ return Nat
| _ ⇒ fail
end
| prd t1 ⇒
T1 <- type_check Gamma t1 ;;
match T1 with
| Nat ⇒ return Nat
| _ ⇒ fail
end
| mlt t1 t2 ⇒
T1 <- type_check Gamma t1 ;;
T2 <- type_check Gamma t2 ;;
match T1, T2 with
| Nat, Nat ⇒ return Nat
| _,_ ⇒ fail
end
| test0 guard t f ⇒
Tguard <- type_check Gamma guard ;;
T1 <- type_check Gamma t ;;
T2 <- type_check Gamma f ;;
match Tguard with
| Nat ⇒ if eqb_ty T1 T2 then return T1 else fail
| _ ⇒ fail
end
(* Complete the following cases. *)
(* sums *)
(* FILL IN HERE *)
(* lists (the tlcase is given for free) *)
(* FILL IN HERE *)
| tlcase t0 t1 x21 x22 t2 ⇒
match type_check Gamma t0 with
| Some (List T) ⇒
match type_check Gamma t1,
type_check (update (update Gamma x22 (List T)) x21 T) t2 with
| Some T1', Some T2' ⇒
if eqb_ty T1' T2' then Some T1' else None
| _,_ ⇒ None
end
| _ ⇒ None
end
(* unit *)
(* FILL IN HERE *)
(* pairs *)
(* FILL IN HERE *)
(* let *)
(* FILL IN HERE *)
(* fix *)
(* FILL IN HERE *)
| _ ⇒ None (* ... and delete this line when you complete the exercise. *)
end.
Just for fun, we'll do the soundness proof with just a bit more
automation than above, using these "mega-tactics":
Ltac invert_typecheck Gamma t T :=
remember (type_check Gamma t) as TO;
destruct TO as [T|];
try solve_by_invert; try (inversion H0; eauto); try (subst; eauto).
Ltac analyze T T1 T2 :=
destruct T as [T1 T2| |T1 T2|T1| |T1 T2]; try solve_by_invert.
Ltac fully_invert_typecheck Gamma t T T1 T2 :=
let TX := fresh T in
remember (type_check Gamma t) as TO;
destruct TO as [TX|]; try solve_by_invert;
destruct TX as [T1 T2| |T1 T2|T1| |T1 T2];
try solve_by_invert; try (inversion H0; eauto); try (subst; eauto).
Ltac case_equality S T :=
destruct (eqb_ty S T) eqn: Heqb;
inversion H0; apply eqb_ty__eq in Heqb; subst; subst; eauto.
Theorem type_checking_sound : ∀Gamma t T,
type_check Gamma t = Some T → has_type Gamma t T.
Proof with eauto.
intros Gamma t. generalize dependent Gamma.
induction t; intros Gamma T Htc; inversion Htc.
- (* var *) rename s into x. destruct (Gamma x) eqn:H.
rename t into T'. inversion H0. subst. eauto. solve_by_invert.
- (* app *)
invert_typecheck Gamma t1 T1.
invert_typecheck Gamma t2 T2.
analyze T1 T11 T12.
case_equality T11 T2.
- (* abs *)
rename s into x. rename t into T1.
remember (update Gamma x T1) as Gamma'.
invert_typecheck Gamma' t0 T0.
- (* const *) eauto.
- (* scc *)
rename t into t1.
fully_invert_typecheck Gamma t1 T1 T11 T12.
- (* prd *)
rename t into t1.
fully_invert_typecheck Gamma t1 T1 T11 T12.
- (* mlt *)
invert_typecheck Gamma t1 T1.
invert_typecheck Gamma t2 T2.
analyze T1 T11 T12; analyze T2 T21 T22.
inversion H0. subst. eauto.
- (* test0 *)
invert_typecheck Gamma t1 T1.
invert_typecheck Gamma t2 T2.
invert_typecheck Gamma t3 T3.
destruct T1; try solve_by_invert.
case_equality T2 T3.
(* FILL IN HERE *)
- (* tlcase *)
rename s into x31. rename s0 into x32.
fully_invert_typecheck Gamma t1 T1 T11 T12.
invert_typecheck Gamma t2 T2.
remember (update (update Gamma x32 (List T11)) x31 T11) as Gamma'2.
invert_typecheck Gamma'2 t3 T3.
case_equality T2 T3.
(* FILL IN HERE *)
Qed.
Theorem type_checking_complete : ∀Gamma t T,
has_type Gamma t T → type_check Gamma t = Some T.
Proof.
intros Gamma t T Hty.
induction Hty; simpl;
try (rewrite IHHty);
try (rewrite IHHty1);
try (rewrite IHHty2);
try (rewrite IHHty3);
try (rewrite (eqb_ty_refl T));
try (rewrite (eqb_ty_refl T1));
try (rewrite (eqb_ty_refl T2));
eauto.
- destruct (Gamma x); try solve_by_invert. eauto.
Admitted. (* ... and delete this line *)
(*
Qed. (* ... and uncomment this one *)
*)
End TypecheckerExtensions.
☐
remember (type_check Gamma t) as TO;
destruct TO as [T|];
try solve_by_invert; try (inversion H0; eauto); try (subst; eauto).
Ltac analyze T T1 T2 :=
destruct T as [T1 T2| |T1 T2|T1| |T1 T2]; try solve_by_invert.
Ltac fully_invert_typecheck Gamma t T T1 T2 :=
let TX := fresh T in
remember (type_check Gamma t) as TO;
destruct TO as [TX|]; try solve_by_invert;
destruct TX as [T1 T2| |T1 T2|T1| |T1 T2];
try solve_by_invert; try (inversion H0; eauto); try (subst; eauto).
Ltac case_equality S T :=
destruct (eqb_ty S T) eqn: Heqb;
inversion H0; apply eqb_ty__eq in Heqb; subst; subst; eauto.
Theorem type_checking_sound : ∀Gamma t T,
type_check Gamma t = Some T → has_type Gamma t T.
Proof with eauto.
intros Gamma t. generalize dependent Gamma.
induction t; intros Gamma T Htc; inversion Htc.
- (* var *) rename s into x. destruct (Gamma x) eqn:H.
rename t into T'. inversion H0. subst. eauto. solve_by_invert.
- (* app *)
invert_typecheck Gamma t1 T1.
invert_typecheck Gamma t2 T2.
analyze T1 T11 T12.
case_equality T11 T2.
- (* abs *)
rename s into x. rename t into T1.
remember (update Gamma x T1) as Gamma'.
invert_typecheck Gamma' t0 T0.
- (* const *) eauto.
- (* scc *)
rename t into t1.
fully_invert_typecheck Gamma t1 T1 T11 T12.
- (* prd *)
rename t into t1.
fully_invert_typecheck Gamma t1 T1 T11 T12.
- (* mlt *)
invert_typecheck Gamma t1 T1.
invert_typecheck Gamma t2 T2.
analyze T1 T11 T12; analyze T2 T21 T22.
inversion H0. subst. eauto.
- (* test0 *)
invert_typecheck Gamma t1 T1.
invert_typecheck Gamma t2 T2.
invert_typecheck Gamma t3 T3.
destruct T1; try solve_by_invert.
case_equality T2 T3.
(* FILL IN HERE *)
- (* tlcase *)
rename s into x31. rename s0 into x32.
fully_invert_typecheck Gamma t1 T1 T11 T12.
invert_typecheck Gamma t2 T2.
remember (update (update Gamma x32 (List T11)) x31 T11) as Gamma'2.
invert_typecheck Gamma'2 t3 T3.
case_equality T2 T3.
(* FILL IN HERE *)
Qed.
Theorem type_checking_complete : ∀Gamma t T,
has_type Gamma t T → type_check Gamma t = Some T.
Proof.
intros Gamma t T Hty.
induction Hty; simpl;
try (rewrite IHHty);
try (rewrite IHHty1);
try (rewrite IHHty2);
try (rewrite IHHty3);
try (rewrite (eqb_ty_refl T));
try (rewrite (eqb_ty_refl T1));
try (rewrite (eqb_ty_refl T2));
eauto.
- destruct (Gamma x); try solve_by_invert. eauto.
Admitted. (* ... and delete this line *)
(*
Qed. (* ... and uncomment this one *)
*)
End TypecheckerExtensions.
Exercise: 5 stars, standard, optional (stlc_step_function)
Above, we showed how to write a typechecking function and prove it sound and complete for the typing relation. Do the same for the operational semantics — i.e., write a function stepf of type tm → option tm and prove that it is sound and complete with respect to step from chapter MoreStlc.
Module StepFunction.
Import MoreStlc.
Import STLCExtended.
(* Operational semantics as a Coq function. *)
Fixpoint stepf (t : tm) : option tm
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
(* Soundness of stepf. *)
Theorem sound_stepf : ∀t t',
stepf t = Some t' → t --> t'.
Proof. (* FILL IN HERE *) Admitted.
(* Completeness of stepf. *)
Theorem complete_stepf : ∀t t',
t --> t' → stepf t = Some t'.
Proof. (* FILL IN HERE *) Admitted.
End StepFunction.
☐
Import MoreStlc.
Import STLCExtended.
(* Operational semantics as a Coq function. *)
Fixpoint stepf (t : tm) : option tm
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
(* Soundness of stepf. *)
Theorem sound_stepf : ∀t t',
stepf t = Some t' → t --> t'.
Proof. (* FILL IN HERE *) Admitted.
(* Completeness of stepf. *)
Theorem complete_stepf : ∀t t',
t --> t' → stepf t = Some t'.
Proof. (* FILL IN HERE *) Admitted.
End StepFunction.
Exercise: 5 stars, standard, optional (stlc_impl)
Using the Imp parser described in the ImpParser chapter of Logical Foundations as a guide, build a parser for extended STLC programs. Combine it with the typechecking and stepping functions from the above exercises to yield a complete typechecker and interpreter for this language.
Module StlcImpl.
Import StepFunction.
(* FILL IN HERE *)
End StlcImpl.
☐
Import StepFunction.
(* FILL IN HERE *)
End StlcImpl.
(* Mon Mar 25 14:39:39 EDT 2019 *)