
CS414 Section 1
Project 1: Minithreads

Bernard Wong
bwong@cs.cornell.edu
Slides modified from Adrian Bozdog’s slides

mailto:bwong@cs.cornell.edu

What are minithreads?

User-level thread package for Windows
NT/2000/XP

Windows only comes with kernel-level
threads, but user-level threads are better in
some cases because of its low overhead

Real motivation?
We want you to learn how threading and
scheduling works

What do I have to do?

Implement minithreads of course!
Requires the following parts:

FIFO Queue
O(1) enqueue and dequeue

Non-preemptive threads and FCFS scheduler
Semaphore

Threads not very useful if they can’t work together
Simple application – “Food services” problem

Optional:
Add preemption, not covered today
Optional material not graded

What do we give you?

Interfaces for the queue, minithread, and
semaphore

Machine specific parts
i.e. context switching, stack initialization

Simple test applications
Not exhaustive tests!
Write you own test programs to verify the
correctness of your code.

Minithreads structure

machineprimitives_x86.c

machineprimitives.h

machineprimitives.c

minithread.h

minithread.c

synch.h

synch.c

queue.h

queue.c

interrupts.h

interrupts.c

head
Queues

tail

Singly or doubly link list are both fine and can satisfy the O(1)
requirements

Queue must be able to hold arbitrary data
Take any_t as queue_append and queue_prepend argument
any_t really just a void*

Note that queue_dequeue takes any_t* as its second argument
Why? Remember that C is call by value

If you want the any_t variable in your calling function to point to
the where the item you just dequeued points to, you must pass
the address of your any_t pointer to the queue_dequeue
function.

Your queue_dequeue function must dereference the any_t*
argument before assigning it the value it just dequeued.

Example of using queue_dequeue

In the calling function:
any_t datum = NULL;
queue_dequeue(run_queue, &datum);
/* You should check the return value in your code */

In queue_dequeue function:
int queue_dequeue(queue_t queue, any_t* item) {

…
item = ((struct my_queue)queue)->head->datum;
…

}

Minithread structure

Need to create a Thread Control Block
(TCB) for each thread
Things that must be in a TCB:

Stack top pointer
Stack base pointer

i.e. where the stack start in memory
Thread identifier
Anything else you think might be useful

Minithread operations to implement

minithread_t minithread_fork(proc, arg)
create thread and make it runnable

minithread_t minithread_create(proc, arg)
create a thread but don’t make it runnable

void minithread_yield()
Let another thread in the ready queue run
(make the scheduling decisions here)

void minithread_start(minithread_t t)
void minithread_stop()

start another thread, stop yourself

Context switching

Swap current execution contexts with a thread from
the ready queue (a queue that holds all your ready to
run processes)

Registers
Program counter
Stack pointer

minithread_switch(old_thread_sp_ptr,
new_thread_sp_ptr)is provided

So how does context switching work?

Before context switch starts

old_thread_sp_ptr ?

old thread TCB

new_thread_sp_ptr

new thread’s
registers

new thread TCB

D_main()

E()

A_main()

B()

C()

ESP

Push on old context

old_thread_sp_ptr ?

old thread TCB

new_thread_sp_ptr

new thread’s
registers

new thread TCB

D_main()

E()

old thread’s
registers

A_main()

B()

C()

ESP

Change stack pointers

old_thread_sp_ptr new_thread_sp_ptr

old thread’s
registers

new thread’s
registers

old thread TCB new thread TCB

A_main()

B()

C()

D_main()

E()

ESP

Pop off new context

old_thread_sp_ptr new_thread_sp_ptr

old thread’s
registers

old thread TCB new thread TCB

A_main()

B()

C()

D_main()

E()

ESP

Minithread Creation

Two methods to choose from
minithread_create(proc, arg)
minithread_fork(proc, arg)

proc is a proc_t (a function pointer)
typedef int (*proc_t)(arg_t)
e.g. int run_this_proc(int* x)

arg_t is actually an int*, but you can cast
any pointer to it.

Minithread Creation

For each thread, you must allocate a stack for
it and initialize the stack

minithread_allocate_stack(stackbase,
stacktop)
minithread_initialize_stack(stacktop,
body_proc, body_arg, final_proc,
final_arg)

The implementation of allocate and initialize
stack are given to you.

Minithread Creation

root_proc addr

final_arg

final_proc addr

body_arg

body_proc addr

minithread_initialize_stack initializes
the stack with root_proc (a.k.a.
minithread_root), which is a wrapper
that calls body_proc(body_arg),
followed by final_proc(final_arg).

Sets up your stack to look as
though a minithread_switch has
been called from this thread, such
that when you switch to this
thread, it will run root_proc.

stack_top

stack_base

Minithread Creation

What’s final_proc for?
Thread cleanup

You will want to free up resources such as TCB and stack
allocation after your thread terminates (or else your
program will run out of memory like certain OS-es….)

But can a thread cleanup after itself?
No, not directly, not safe for a thread to free it’s own stack.

Solution?
Dedicated cleanup thread

Should only run if there are threads to clean up though,
otherwise, otherwise it should be blocked.

Yielding a thread

Because our threads are non-preemptive, we
need a user level way of initiating a switch
between threads

Thus: minithread_yield

Use minithread_switch to implement
minithread_yield

Where does a yielding thread go?
Into the ready queue, so it can be re-scheduled later

Initializing the system

minithreads_system_initialize
(proc_t mainproc,arg_t mainarg)
Starts up the system
First user thread runs

mainproc(mainarg)
Should probably create any additional threads
(idle, cleanup, etc.), queues, semaphores, and
any other global structures at this point.

What about the Windows thread?

Windows gives me an initial (kernel) thread and stack
to work with, can I re-use that for one of my threads?

Yes, and you should as you don’t really want to throw away
memory for no reason.
But be careful, make sure this thread never exits or gets
cleaned up.

Remember, your threaded program never really exits,
as the idle thread will always keep running.

May want to re-use the initial Windows thread as the idle
thread because of this property.

Semaphores

semaphore_t semaphore_create();
Creates a semaphore (allocating resources for it)

void semaphore_destroy(semaphore_t sem);
destroys a semaphore (freeing resources for it)

void semaphore_initialize(semaphore_t sem, int cnt);
Initializes semaphore to an initial value
i.e. Determines how many more semaphore_P functions can
be called than semaphore_V before a semaphore_P will block

void semaphore_P(semaphore_t sem);
Decrements on semaphore, must block if semaphore value
less than or equal to 0.

void semaphore_V(semaphore_t sem);
Increments on semaphore, must unblock a thread that’s
blocked on it.

Properties of Semaphores

Value of semaphore manipulated atomically
through V and P
Without preemption, trivial to implement

i.e. Just don’t have a minithread_yield in
semaphore_P and semaphore_V

With preemption, requires mutual exclusion
around instructions that change the variable
value

i.e. test_and_set on a lock variable
We’ll covered this in the next section

Properties of Semaphores

Thread waiting to get a semaphore (i.e. after calling a
semaphore_P with the semaphore value less than or
equal to 0) must block on the semaphore

Each semaphore should therefore have a blocked thread
queue

After calling a semaphore_V, a thread waiting on that
semaphore must unblock and be made runnable.

Concluding remarks

Watch out for memory leaks
Write a clean and understandable code

Variables should have proper names
Provide meaningful but not excessive comments
Don’t make us guess at what you wrote, the project
is simple enough that we should be able to
understand what you are doing at a glance
Do not terminate when your user program threads
are done

Remember that the idle thread should never terminate

Due Date : Monday, February 13

	CS414 Section 1Project 1: Minithreads
	What are minithreads?
	What do I have to do?
	What do we give you?
	Minithreads structure
	Queues
	Example of using queue_dequeue
	Minithread structure
	Minithread operations to implement
	Context switching
	Before context switch starts
	Push on old context
	Change stack pointers
	Pop off new context
	Minithread Creation
	Minithread Creation
	Minithread Creation
	Minithread Creation
	Yielding a thread
	Initializing the system
	What about the Windows thread?
	Semaphores
	Properties of Semaphores
	Properties of Semaphores
	Concluding remarks

