
1

University of Washington

5/14/2001 1

Emin Gun Sirer

Extensibility, Safety and Performance in
the SPIN Operating System

Motivation

Performance

Extensibility

M
S-

DOS M
ach

SafetyUNIX

Approach

? Extensibility
» Allow applications to extend any service

? Performance
» Dynamically inject application code into the kernel

? Safety
» Rely on language protection for memory-safety
» Rely on interface design for component-safety

A SPIN extension

Application

Extend
VM Fault

SPIN MMU
Services

Application
Extension

ProtectFault() UnprotectPage()

User
Kernel

Application

Memory
Service

2

University of Washington

5/14/2001 2

Structure

Execution
State

Unix
Apps

OSF/1
Unix server

Video Server Web Server

File SysNetworkProcess

HTTPNet Video
Threads

Mach API
Unix API

Applications

Application
Extensions

Shared
Extensions

SPIN Core
ServicesMemory Devices Extension

Services

User
Kernel

Syscall

Safety

Language-based protection

Modula-3
– Type-safe & system-safe
– Interfaces for hiding resources
– Cheap capabilities

Typesafety vs. System safety

? Typesafety (a la Mesa, Java, et al.)
» Objects of type X can only be treated as X or one of its

supertypes
? Pointers are cast-checked, arrays are bound-checked, stack

references are size-checked, and garbage collection is used to
pick up free objects

3

University of Washington

5/14/2001 3

Language-based capabilities
INTERFACE PageTable;
TYPE T <: REFANY;

PROCEDURE New(): T;
END PageTable.

INTERFACE PageTableInternal;
REVEAL PageTable.T =

BRANDED REF RECORD
PTBase: ADDRESS;
…

END;
END PageTableInternal.

t := PageTable.New();

* Unforgeable

* Optionally opaque

* Cheap

Shortcomings of typesafety
? Typesafety is not strong enough!!

» Need to be able to make statements about program, not
type, invariants.

? Your module will not be left in an inconsistent state with
respect to locks, updates, data values.

? Sometimes, typesafety is too restrictive!
» Need to be able to “bend” typesafety rules in order to

avoid copying.
? A network packet is both a bag of bytes and an object of type

IP.

System safety
? Additions to M3 for system safety

» Abortable upcalls
? Procedures marked EPHEMERAL can be terminated at any time.

Compiler ensures that the system is left intact.

» Interaction with the collector
? Objects can be pinned down when communicating with the

outside world, e.g. device drivers.

» Unforgeable objects
? An object may only be created by the module that defines it;

rogue extensions cannot forge objects.

» System-safe (but not typesafe) casts
? An object of type A can be VIEWed as an object of type B as

long as the conversion would not cause program faults.

SPIN Protection Domains
? Kernel provided abstraction:

»Logical Protection Domains
? Handles for code management and linking
? Provide isolation within a single address

space
? Named by capabilities

4

University of Washington

5/14/2001 4

Operations on Domains
? Create
? Name
? Resolve

» Exercise access

? Export
» Share interfaces

DIp := Domain.Create(INTERFACE(IP));
Nameserver.Register(“ip”,Dip,Auth);

DTcp := Domain.Create(ObjectFile);
DIp := Nameserver.Query(“ip”,Cred);
Domain.Resolve(DTcp, DIp);
Domain.Initialize(Dtcp);

MODULE TCP
…

IP.Send(data);

INTERFACE IP;

PROCEDURE Send();

Using Domains
? Resolve symbol

references to symbol
definitions

? The types of the
imported and
exported symbol must
match

TCP_rogue TCP_good

Service Providers

IP ATMHalt Dev UDP

Domains as Capabilities

? Domains nest to simplify capability
management

? Binding code generated automatically
? Domain lookup through a nameserver

SpinPrivate
Traps

Device

SpinPublic
Threads

Nameserver

Memory

Dispatcher

Domains

Domains & protection

Execution
State

Unix
Apps

OSF/1
Unix server

Video Server Web Server

File SysNetworkProcess

HTTPNet Video
Threads

Mach API
Unix API

Applications

Application
Extensions

Shared
Extensions

SPIN Core
ServicesMemory Devices Extension

Services

User
Kernel

Syscall

5

University of Washington

5/14/2001 5

Domain Summary

? Logical protection domains within a single
address space

? Complements type-safety to achieve system
safety

? Sharing is cheap
» Share code by jumping directly
» Share data by passing pointers

? No runtime overhead

Extensibility

Dispatcher
Event-based communication model

SPIN
Dispatcher

Event
Raisers

Event
Handlers

Guards

Event implementation

Use procedure call to define and invoke events
– Convenient syntax
– High performance implementation for common

case
– Most procedures in the system can be extended

6

University of Washington

5/14/2001 6

Using Events - Defining/Raising
INTERFACE Ethernet;
PROCEDURE PacketArrived(p:Pkt);

END Ethernet.

MODULE EthernetDriver;
PROCEDURE Interrupt(p: Pkt) =

BEGIN
Ethernet.PacketArrived(p);

END Interrupt;

Event definition

Event raise

Using Events - Handling
PROCEDURE IPPacketArrivedGuard(p: Pkt)

: BOOLEAN =
BEGIN

RETURN p.ethertype = IPPacket;
END IPPacketArrivedGuard;

PROCEDURE IPPacketArrivedHandler(p: Pkt) =
BEGIN

(* Perform IP fragment assembly *)
END IPPacketArrivedHandler;

Guard

Event
handler

Dispatcher.Install(Ethernet.PacketArrived,
IPPacketArrivedGuard,
IPPacketArrivedHandler,
Credentials);

Installation

A protocol graph in SPIN

UDP
packet arrived

ICMP
packet arrived

TCP
packet arrived

IP packet arrived

Ether packet arrived

UDP recv
Active

messages

RPC

Video

HTTP

ICMP count Ping

IP count
UDP TCP ICMP

IP

Ether count

Ethernet driver

Design summary

? Safety
– Memory safe language for extensions
– Link-time enforcement for access control

? Extensibility
– Fast and safe centralized control transfer switch

? Result
– Allows fast and safe fine-grained service

extension

7

University of Washington

5/14/2001 7

Performance

SPIN performance advantages

? Extensions provide specialized service
– Don’t execute unnecessary code

? Extensions close to kernel services
– Low latency response to faults/interrupts
– Invoking services is cheap

Protected communications

0

20

40

60

80

100

Protected
Call

System
Call

IPC

T
im

e
in

 m
ic

ro
se

co
nd

s

DEC OSF/1
Mach
SPIN0.13

845

Other basic system services

0
200
400
600
800

1000
1200
1400

Fork/Join Protection
Fault

T
im

e
in

 m
ic

ro
se

co
nd

s DEC OSF/1
Mach
SPIN

8

University of Washington

5/14/2001 8

Per-port TCP packet forwarding

0
500

1000
1500
2000
2500
3000

Ethernet ATM

T
im

e
in

 m
ic

ro
se

co
nd

s

DEC OSF/1
SPIN

TCP packets in TCP packets outHTTP
Server

Video service

0
5

10
15
20
25
30
35
40
45

0 5 10 15

Number of Video Streams

Pe
rc

en
t C

PU
 U

til
iz

ed

DEC OSF/1

SPIN

Conclusions

? It is possible to combine extensibility,
safety and performance in a single system

? Static mechanisms, implemented through
the compiler, make this possible

? http://www-spin.cs.washington.edu/

Web Server TCP

FileSystem

User
Kernel

Modifications to Modula-3

? Memory safe cast
– VIEW operator

? Procedures which may be terminated
– EPHEMERAL procedure type

? Naming code
– INTERFACE UNIT, MODULE UNIT

? Universal procedure type
– PROCANY reference type

9

University of Washington

5/14/2001 9

How big are these extensions?
Component source size in lines text size in bytes data size in bytes

NULL syscall 19 96 656
IPC 127 1344 1568
Cthreads 219 2480 1792
DEC OSF/1 threads 305 2304 3488
VM workload 263 5712 1472
IP 744 19008 13088
UDP 1046 23968 16704
TCP 5077 69040 9840
HTTP 392 5712 4176
TCP Forward 187 4592 2080
UDP Forward 138 4592 2144
Video Client 95 2736 1952
Video Server 304 9228 3312

Execution speed

0
10
20

30
40
50
60
70

80
90

100

hotlist Richards MD5 lld

GCC
DEC SRC

? Performance is comparable to that of C.

Time
(sec.)

System Performance

0
200
400
600
800

1000
1200
1400
1600
1800

T
hread

Fault

T
rap

Prot-1

Prot-100

U
nprot-100

A
ppel1

A
ppel2

T
C

P

T
im

e
in

 m
ic

ro
se

co
nd

s

DEC OSF/1

Mach

SPIN

Language Extensions

? Run-time handles for interfaces and
modules.

? Isolation of trust.
? Pointer-safe casting

10

University of Washington

5/14/2001 10

Isolating Callers

? Execute untrusted code from interrupts
» Active messages

? Untrusted clients may not terminate
» Forceful termination may violate system state

? EPHEMERALprocedures can be terminated at
any time

» Can only call other EPHEMERALprocedures.

EPHEMERAL PROCEDURE ActiveMsgHandler(m: Mbuf.T) =
BEGIN
time := time + VIEW(m.data,TimeDelta.T);

END;

Safe Casts

? View raw data as typed data
» OSes require viewing bits as typed objects
» Copying is expensive and violates sharing

? WITH NewView = VIEW(var, T) DO … END;
» Cannot forge pointers or create illegal values

Modula-3 Concerns

? Execution speed
? Threads, allocation, GC
? Memory usage
? Mixed-language environment

Memory usage

? Code and data size is small
? Sharing reduces memory requirements
? Typical examples:

» Web server extension: 9K
» Cthreads Package: 4K
» TCP forwarder: 6K

11

University of Washington

5/14/2001 11

Runtime Services

? Threads
» DEC SRC fork/join: 700 usecs.
» SPIN fork/join: 22 usecs.

? Allocator overhead
? Garbage collector overhead

» Enable incremental, generational collection

Mixing Languages

? Control transfer
» Automatic generation of C header files (C -> M3)
» Unsafe EXTERNAL pragma (M3 -> C)

? Data sharing
» Data layout is identical to that of C
» Immobilize heap data when sharing with C

