Solutions to Hw #2

Q1) A user level thread library, can communicate between similar ULTs on other processors, while KLTs of different systems do not communicate. KLTs cannot take advantage of the other CPUs. So load balancing is not possible and hence no performance enhancement can be gained despite other free CPUs may be available. Hence ULTs are more useful than KLTs. ULT blocking problem only partially exists, since threads can be divided into groups which run on different CPUs, in which case only threads within a single CPU is subject to blocking problem.

Q2a) PCB and other related data structures need to be maintained as a part of the OS because of protective reasons. Some of these reasons are the following.

· Protection of 1 user from other user. User should not be able to modify the PCB in their favor or others detriment. (X could send wrong signal to Y, decrease Y’s priority etc…).

· Protection of the OS from the user. Certain parts of the operating system need to be protected from the user. OS processes, daemons, device drivers, etc should be interfered by the users.

· Protection against accidental errors. Users programs could run into infinite loops, accidentally write into restricted memory area etc…

Q2b) Several protection mechanisms such as reference monitors (check validity of each memory access), protection domains (kernel processes, User’s processes), and other constraints (process preemption), etc… are not needed since the users are totally dependable and co-operative.

However, many operating system services such as file systems, virtual memory, IO system etc still needs to exist although users might have unprotected and unrestricted access to these.

Q3a) Under the assumptions that there exits a schedule such that all jobs can be completed within the deadline, the ‘earliest deadline first’ scheduling algorithm provides an optimal schedule. According to this scheduling algorithm, of all the processes available for scheduling presently, one with the earliest deadline is selected to be executed if it can finish within the deadline.

 For example, consider the 4 jobs A with deadline 10 and running time 4, B with deadline 4 and running time 2, C with deadline 6 and running time 3, and D with deadline 12 and running time 2. Assume that all the jobs arrive at the start. In this case, the earliest deadline scheduling, schedules job B first, C next, A next and D next. As you can clearly see, in this schedule all processes finish within their deadline.

Consider another example, where job A has deadline 5, running time 1, job B has deadline 6, running time 2, job C has deadline 7, running time 3, and job 4 has deadline 4 and running time 4. Clearly, in this case the eaeliest deadline first algorithm will schedule jobs in the order D, A, B, C, in which case only 2 job finish within their deadline. However, scheduling A, B, C, D makes 3 jobs (A, B, C) finish within their deadline. Thus this algorithm will not be optimal if we relax the assumption that there is a possible schedule accommodating all processes.

Q3b) As illustrated above, we need to specify both the estimated running time, and the deadline to this algorithm. Knowing the running time prevents the algorithm from scheduling a job that cannot possibly terminate within its deadline.

3c) Prove that earliest deadline scheduling is the most optimal:

Assumptions:

· All jobs start at the same time 0.

· The running time of each job is known.

· The scheduling is non-preemptive scheduling.

· There is a schedule such that all processes can finish within the deadline.

Let there be n jobs with running times r1, r2, …, rn and deadline d1, d2, …, dn.

Non-preemptive Earliest Deadline Scheduling:

At each time t, when a job is finished, choose a job with the minimum value of d such that t+r < d, i.e., choose a job with the minimum deadline that can finish within the deadline.

Lemma: Let S = i1, i2, …,in be a schedule of jobs. If there is a 1<=j<=n such that dij > dij+1, then the schedule S’ = i1, i2, …, ij-1, ij+1, ij, ij+2, …, in has at least the same number of jobs that complete before deadline.

Proof: A job ik in schedule S completes within the deadline iff ri1 + ri2 + … + rik < dik. Thus all jobs i1, i2, …, ij-1 finish within the deadline in S’ iff they do so in S. The same also holds for jobs ij+2, …, in. This is because the above sum is unaltered by interchanging jobs ij and ij+1. Now consider the job ij and ij+1. Since ij+1 completes within deadline, r1 + … + rj-1 + rj + rj+1 < dj+1. Since di > dj, we know r1 + … + rj-1 + rj+1 + rj < dj. Also trivially, r1 + … + rj-1 + rj+1 < dj+1. Thus both jobs j and j+1 finish within the deadline in schedule S’. Thus S’ has at least the same number of jobs finishing within the deadline.

Theorem: EDS is a scheduling algorithm, which gives optimal scheduling.

Proof: Any optimal schedule can be converted into an EDS schedule by switching jobs with smaller deadline with that with greater deadline several number of times (bubble sort) as shown in lemma 2. Thus EDS must have the same number of jobs finishing within deadline as the optimal algorithm.

4a) First of all, note that under pre-emptive scheduling, the non-preemptive strategy of shortest job first, SJF does not suffice. For example, consider a two job example where job A has run time 10, starting at 0 and job B has run time 4 starting at time 2. SJF would give a (A, B) schedule with average completion time = (10 + 14)/2 = 12. What we need here is to pre-empt the job A when the job B arrives and start running Job B instead, in this case, we get a completion time = (14 + 6)/2 = 10. Thus SJF no longer works.

The strategy we need is called the ‘shortest remaining time first’ algorithm. According to this algorithm, at the end of every time quantum, the process, which will finish the earliest, will be chosen from the ready processes and executed in the next quantum. From the above example, you can see why this strategy actually minimizes the average completion time.

4b) In this case, we need to minimize the average response time. Where the response time is the time between start of job and the first response of the job to the user (response may be something written on the screen, some input taken from key board, something written to a file, etc…). Thus once a process has given a response, is no longer valuable to keep executing the same process. We need the round robin scheme of scheduling, where each process executes until it gives a response and then a new process is scheduled instead.

