Solutions to Home Work #1 CS414 Fall 2000 

1a) The following is a solution for this question.

/* shared */

semaphore limit = 2;

semaphore mutex = 1;

boolean p1free = TRUE;  /* printer one available? */

boolean p2free = TRUE;  /* printer two available? */

print_anywhere(file) {

  string pr_name;   /* local (not shared) variable */

  P(limit);    /* no more than two processes at a time */

  P(mutex);    /* critical section to select a printer */

  if (p1free) then { pr_name = "p1"; p1free = FALSE; }

  else { pr_name = "p2"; p2free = FALSE; }

  V(mutex);    /* end of critical section - printer selected */

  print(pr_name,file);

  if (pr_name == "p1") then p1free = TRUE;

  else p2free = TRUE;

  V(limit);

}

1 b) Proof sketch for various properties.

No Deadlocks: 

Since mutex  is a mutex semaphore and the code section between a wait and signal of this semaphore cannot block, deadlocks cannot be caused by waiting on mutex.

Suppose that a chain of processes is deadlocked on limit.  Then since limit is initialized to 2 and every exit from this function signals limit, there are at least two processes, which are currently printing the files.  Since the print function does not block forever, these processes would eventually not be blocking and signal the semaphore.  So no deadlocks are possible.

No Starvation:


In this case, usage of OS defined semaphores makes sure that there is no starvation on waiting on semaphores if there are no deadlocks.

Fair:


Suppose one of the two printers is currently idle.  Then no process can be waiting on semaphore limit.  This is because no two processes can be printing a file.  Suppose there are two processes P1 and P2 printing the file.  Assume P1 entered the CS controlled by mutex, then when P2 would have entered the same CS, p1free would have been false and P2 would be printing on p2. But p2 is idle so P2 is not printing any file i.e., P2 never entered past P(limit).


The fairness to ensure that all processes get equal preference to access the printers depends on the fairness used by OS on processes waiting on a semaphore.  

2 a) The following algorithm solves the problem sufficiently.


Init: 
S.count := 1; N.count := 0; 

in := out :=0;

append(v)

  

b[in] = v;

  

in++;

take(v)

  

w:=b[out];

  

out++;

  
return w;

Producer:

repeat

  


produce v;

append(v);

signal(N);

forever

Consumer:

repeat

wait(N);

w:=take();

  


consume(w);

forever

Since there are only 1 producer and 1 consumer, only one process is going to access the in variable of the buffer and only one process is going to access the out variable of the buffer.  So we don't need to have the mutex semaphore S.  It is deadlock free and starvation free for the same reasons as the algo discussed in the class.

2 b)  The following algorithm solves this problem sufficiently.


Init: 
SIn.count := 1; SOut.count := 1; N.count := 0; 

in := out :=0;

append(v)

  

b[in] = v;

  

in++;

take(v)

  

w:=b[out];

  

out++;

  
return w;

Producer:

repeat

  


produce v;




wait(SIn);                                

append(v);

signal(SIn);

signal(N);

forever

Consumer:

repeat

wait(N);

wait(SOut);

w:=take();

signal(SOut);

  


consume(w);

forever

Since any item that is currently being appended cannot be consumed by any consumer until, the append is completely finished (the N semaphore is signaled after the append has returned), no producer and consumer will be simultaneously trying to access the same item.  Thus synchronization needs to be provided only between two producers trying to append and two consumers trying to take.  This can be achieved by introducing two semaphores SIn and SOut instead of S, as shown above.  Now the consumer and producer compete independently for appending and taking, so a consumer can access the buffer simultaneously as a producer.

3 a) Using the following method creates the listed problems.

        … disable interrupts ………………………. enable interrupts

             Enter CS                  
Critical Section
Exit CS

1. Suppose the CS takes a very long time to execute then there is a possibility of missing clock interrupts.  This means several time sensitive operations  (CPU scheduling, Disk accesses, Network accesses) will be severely affected.

2. Suppose by accident or malice, the CS enters into a state of deadlock or infinite loop, there is no way of recovering from this state because the clock interrupts cannot be detected and so these processes will never be preempted by the scheduler.

 b) Semaphore operations signal and wait can be defined using tset or xchang (swap) as follows.

 Using TSET:


Semaphore S {



int count;



Q processQ;



bool b;


}


wait(S)  { 

while(!tset(b)){;} /* acquire lock */

if S.count <= 0;

  


S.count--;

Set process state to be BLOCKED;

Enter process into S.processQ;

else

S.count--;

S.b := 0; /* release lock */

}

signal(S)  {

while(!tset(b)) {}/* acquire lock */

S.count++;

if S.processQ not empty

 


 Exit process and set its state to READY.

S.b := 0; /* release lock  */

}

 Using XCHNG:


Semaphore S {



int count;



Q processQ;



int b;


}


wait(S)  {



int a = 1;



/* acquire lock */

repeat

xchng(a, b)); 

until (a = 0);

if S.count <= 0;

  


S.count--;

Set process state to be BLOCKED;

Enter process into S.processQ;

else

S.count--;

S.b := 0; /* release lock */

}

signal(S)  {



int a = 1;



/* acquire lock */

repeat

xchng(a, b)); 

until (a = 0);

S.count++;

if S.processQ not empty

 


 Exit process and set its state to READY.

S.b := 0; /* release lock  */

}

4. The following algorithm gives one possible solution to the problem.

a)  Semaphores:

Init:  

    Ready.count := 0;  // controls whether H atom is ready or not.  

    Making.count := 1;   // allows an O atom to get two H atom at a time.

    Done.count := 0;   //  signals the end of reaction to the H atoms. 

HReady {

  signal(Ready);

  wait(Done);

}

OReady {

  wait(Making);

  wait(Ready);

  wait(Ready);

  signal(Making);

     MakeWater;

  signal(Done);

  signal(Done);

}  

Making ensures that an O atom always gets two H atoms at a time, i.e., suppose there are 2 H atoms and 2 O atoms, we need to make sure that 2 O atoms don’t acquire 1 H atom each and wait indefinitely for more H atoms.  This prevents any dead lock.

Ready and Done semaphores ensure that each O atom acquires 2 H atom before reacting and each H atom does not return until the reaction is over.

b) Condition Variables (Monitors):

Monitor {

    Condition: 

        Ready; // H atom is ready.

        Done;  // Reaction is complete, H atom can return.

        Making;  // O atom is trying to make water.

     int numHatoms;  // number of unreacted H atoms currently present.

     bool waiting;  // O atom waiting to make water.

    HReady {

      
numHatoms++;

            /* signal any waiting O atom if present */

            csignal(Ready);

            /* wait for water to be made. */

            cwait(Done);

    }

    OReady {

        /* if another O atom is in the monitor, then wait for it to exit. */

        If (waiting)

            cwait(Making);

        waiting := true;

        /* if there is a H atom in the monitor then don’t wait for it. */

        If (numHatoms == 0) 

            cwait(Ready);

        numHatoms--;

        /* if there is another H atom in the monitor then don’t wait for it */

        If (numHatoms == 0)

            cwait(Ready);

        numHatoms--;

        MakeWater;

         /* awaken the waiting H atoms and let them exit. */

        csignal(Done);

        csignal(Done);

        /* signal any other O atoms if present to enter. */

        waiting := false;

        csignal(Making);

    }

}

Note that in a monitor, a signal on a condition variable will not perform anything if no other process is waiting on it.  That is why we need variables like numHatoms to make sure an O atom waits only if there are no H atoms already in the monitor.

In order to ensure 2 O atoms acquire both the H atoms together, any O atom is made to wait if there is another O atom already in the monitor.

