CS4120/4121/5120/5121—Spring 2023
Eta Type System Specification

Cornell University
Version of February 27, 2023

0 Changes

® 2/20: Updated rules for checking multiple assignment and simplified handling of function and procedure
types.

1 Types

The Eta type system uses a somewhat bigger set of types than can be expressed explicitly in the source
language:

t = int T = (t,t2, ..., tn) n20 R ::=unit ou=vart
| bool | void | ret T
| t[1] | fn T = T

Ordinary types expressible in the language are denoted by the metavariable {, which can be int, bool, or an

array type.

The metavariable T denotes a possibly empty sequence of types, which is useful for procedures, functions,
and multiple assignments.

The metavariable R represents the outcome of evaluating a statement, which can be either unit or void.
The unit type is the the type of statements that might complete normally and permit the following statement
to execute. The type void is the type of statements such as return that never pass control to the following
statement. The void type should not be confused with the C/Java type void, which is actually closer to
unit.

The set ¢ is used to represent typing-environment entries, which can either be normal variables (bound
to var t for some type t), return types (bound to ret T), functions (bound to fn T — T’ where T’ # ()), or
procedures (bound to fn T — ()), where the “result type” () indicates that the procedure result contains no
information other than that the procedure call terminated.

2 Type-checking expressions

To type-check expressions, we need to know what bound variables and functions are in scope; this is
represented by the typing context I', which maps names x to types ¢.

The judgment I' I- e : t is the rule for the type of an expression; it states that with bindings I' we can
conclude that e has the type .

We use the metavariable symbols x or f to represent arbitrary identifiers, n to represent an integer literal
constant, string to represent a string literal constant, and char to represent a character literal constant. Using
these conventions, the expression typing rules are:

I'n:int T F true : bool I' + false : bool I' - string : int[] It char: int

I'(x) =vart IT'key:int They:int @€ {+,-,%*>>,/,%}
I'bx:t I'begPep:int

Tke:int I'kte:int The:int © € {==1=5<<=>>=}
' -e:int I't-e1 ©ep:bool

(CS54120/4121/5120/5121 Spring 2023 1/4 Eta Type System Specification

TEe:bool I'kep:bool Thep:bool ©€{==158&|}

I' te:bool I't e ©ep:bool
r}_et[] r}_61:t[] r|_€2:t[] @E{::/!:}
T'F length(e) : int I'-e;6ep:bool
I'ep:t ... The,:t n>0 I'key :t[]1] Thre:int I'ke :t[]1 Thre:t[]
' {e1,...,en}:tL] T'Feglep] ot T'kFep +ex:t[]

T(f) =fn(t,...,tg) = () The:t; V€Lm 5 >0
THflep, ... en): t

3 Type-checking statements

To type-check statements, we need all the information used to type-check expressions, plus the types of
procedures, which are included in I'. In addition, we extend the domain of I a little to include a special
symbol p. To check the return statement we need to know what the return type of the current function
is or if it is a procedure. Let this be denoted by I'(p) = ret T, where T # () if the statement is part of a
function, or T = () if the statement is part of a procedure. Since statements include declarations, they can
also produce new variable bindings, resulting in an updated typing context which we will denote as I'". To
update typing contexts, we write I'[x — var t|, which is an environment exactly like I' except that it maps x
to var t. We use the metavariable s to denote a statement, so the main typing judgment for statements has
theformI'ts: R AT

Most of the statements are fairly straightforward and do not change I":
I'ksy:unit 40y I'iFEsy:unit-HdI, ... T,_1Fs,:RAT,
'k {s; s ... ss}:RAT

(EMPTY)

SFQ) FrpTwmicaT

T'e:bool TEs:RAT (1F) I'Fe:bool ThHsy:Ry AT Thksy:RyAT”
I'if (¢) s:unit T I'tif (e) s; else sp:lub(Ry,Ry) AT

(IFELSE)

I'e:bool T'kFs:RAT
I'Fwhile (e) s:unit 4T

(WHILE)

I'(f)=fn(ty,...,tn) > () The:t (VieL.n) 4 >0 PRCALL
'k fleg,...,ep) tunit AT ()

[(p) =ret (t,ty,...,tn) THe:t; VELD >0
I'-return e, e, ..., e,:void-T

(RETURN)

The function lub is defined as follows:
Iub(R,R) =R Iub(unit,R) = lub(R,unit) = unit
Therefore, the type of an if is void only if all branches have that type.

Assignments require checking the left-hand side to make sure it is assignable:

I'x) = t The:t ke :t F'ey:int Theg:t
(x) = var - (ASSIGN) ep 1 t[] e int e3
I'Fx = e:unit 4T I'kejlep] = e3:unit AT

(ARRASSIGN)

Declarations are the source of new bindings. Three kinds of declarations can appear in the source
language: variable declarations, multiple assignments, and function/procedure declarations. We are only
concerned with the first two kinds within a function body.

(CS54120/4121/5120/5121 Spring 2023 2/4 Eta Type System Specification

x ¢ dom(T) x¢dom(T) The:t
- (VARDECL) -
' x:t:unit 4T [x — vart] I'tx:t = e:unit 4 T'[x — var ¢

(VARINIT)

x¢dom(I') The:int (Vieln) 3y >1 m>0 te {int, bool}
T'kx:tle1]...[ep] [1...[] :unit 4 T[x — vart[]...[]]
N—— N———

m n+m

(ARRAYDECL)

With respect to (ARRAYDECL), note that the case of declaring an array with no dimension sizes specified
(n = 0) is already covered by (VARDECL).
To handle multiple assignments, we define an assignable expression d (destination), which may be a
variable declaration:
du=x:t | x| eled | _

We define a new “helper” judgment I', T’ I d :: t + "’ that determines the type of an assignable expression
and also extends the context as necessary. Here, I represents the original context before a set of declarations
is processed, and I" represents the context including the declarations previously brought into scope; I'’
represents the context after the destination is taken into account, possibly extending I'" with another binding.

x ¢ dom(T”) I'(x) =vart e :t[]1 Thkep:int
[U/kFx:it wtAl[x—vart] T,['Fx otAT T,UVE_ otAD T, I'Felep] t—HIY

Note that in the rule for _, any type t can be selected. This makes the type system slightly non-syntax-
directed, but a type checker can represent this as a special symbol that can be equated with any possible

type.
Using this judgment, we have the following rules for multiple assignment:

ket (viel.n) =T I,T;Fdt; 4T, (Vi€l.n)

MULTIASSIGN
Fl—dl,...,dn:el,...,en:unit—il"nﬂ ()
T+ [ti (Viel..m) Fl =T F, l”l- - di b i’; - l“l-+1 (Viel‘.n)
T(f)=4n(ty,... tw) — (t,... ¢t
) G m = (4) (MULTIASSIGNCALL)

I'kdy,....dp=fleg, ... ep) iunit 41,41

These rules actually subsume the earlier (ASSIGN), (ARRASSIGN), and (VARINIT) rules in the case where
n =1, so it is redundant to implement those rules directly.

4 Checking top-level declarations

At the top level of the program, we need to figure out the types of procedures and functions, and make sure
their bodies are well-typed. Since mutual recursion is supported, this needs to be done in two passes. First,
we use the judgment I' - gd - I” to state that the top-level (global) declaration gd extends top-level bindings
TtoI”:

x¢l T’ =T[x+— vart| x¢l T/ =T[x > vart|
[Ex:t AT FEx:it=eAT

fedom(T) I"=T[f— fn(ts,..., tu) = ()]
TE flxpity, oo xpity) s AT

(CS54120/4121/5120/5121 Spring 2023 3/4 Eta Type System Specification

fedom(T) I"=T[f—fn(ty,... . ta) = (H,..., t0)]
T fQxpity, ey Xnity) ity ooyt s 34T

The second pass over the program is captured by the judgment I' - ¢gd def, which defines how to check
well-formedness of each global definition against the top-level environment I, ensuring that parameters do
not shadow anything and that the body is well-typed. We treat procedures just like functions that return no
values. The body of a procedure definition may have any type, but the body of a function definition must
have type void, which ensures that the function body does not fall off the end without returning.

|dom(T) U {x1,...,x,}| = |dom(T)| +n
[[x; — varty,..., x, —> var ty,p > ret (#),...,t,)] Fs:void 4T’
TF fQxpity, oo sxpity) b, ..o b, s def

|[dom(T) U {xy,..., x4 }| = |[dom(T)| +n
[[x; — varty,...,x, — vart,,p+—>ret ()] Fs: RAT
' flxqpity, oo xnity) s def

I'Fe:t eisanumeric, boolean, or character literal
T'kx:t def TFx:t=¢ def

5 Checking a program

Using the previous judgments, we can define when an entire program gd; gd, ... gd, that does not contain
a use declaration is well-formed, written - gd; gd, ... gd, prog:

@rFgd ATy TiFgd, 4Ty ... T, qFgd, AT T gd, def (Vi€ln)
+gd, gd, ... gd, prog

For brevity, the rules for adding declarations appearing in interfaces are omitted. These rules are slightly
different from those of the form I ¢gd 4 I in Section 4, where f ¢ dom(T) is replaced with appropriate
conditions. Once added, these declarations also permits declarations in the source file of identical signature.
See Section 8 of the Eta Language Specification.

(CS54120/4121/5120/5121 Spring 2023 4/4 Eta Type System Specification

	Changes
	Types
	Type-checking expressions
	Type-checking statements
	Checking top-level declarations
	Checking a program

