
CS 4120
Introduction to Compilers

Andrew Myers
Cornell University

Lecture 24: Data-flow, control-flow analysis
26 Oct 09

CS 4120 Introduction to Compilers 2

“Classic” constant propagation

• Idea: propagate and fold integer constants
in one pass

 x = 1; x = 1;
y = 5+x; y = 6;
z = y*y; z = 36;

• Information about a single variable:
i. Variable never defined
ii. Variable has single constant value
iii. Variable has multiple values

CS 4120 Introduction to Compilers 3

One-variable Const. Prop.

never
defined

constant

constant

constant c1 constant c2

multiple

!

"

… -3 -2 -1 0 1 2 3 …

Full lattice:

CS 4120 Introduction to Compilers 4

Rest of definition

• Flow function for x = x OP c1:

 Fn(!) = !

Fn(") = "

Fn(c2) = c2 OP c1

• Flow function is monotonic, distributive:
iterative solution works, gives MOP

• What about multiple variables x1…xn?
Want tuple (v1,…vn),

CS 4120 Introduction to Compilers 5

Multiple vars
• Dataflow value is a tuple (v1,…vn), each vi in lattice L=

• Set of tuples (v1,…,vn) is also a lattice
under component-wise ordering:

(v1,…,vn) #(v$1,…,v$n) ! "i vi #v$i

(v1,…,vn) % (v$1,…,v$n) = (v1%v$1,…,vn%vn)

• For any two lattices L1, L2, have product lattice L1#L2 (v1, v2)

#(v$1,v$2) ! v1 # v$1 & v2 #v$2

• Tuple dataflow values are in L×…×L = Ln

!

"

… -3 -2 -1 0 1 2 3 …

CS 4120 Introduction to Compilers 6

Flow functions
• Consider x1 = x2 OP x3

 F(x1, !, x3) = (!, !, x3)
 F(x1, x2, !) = (!, x2, !)
 F(x1, ", x3) = (", ", x3)
 F(x1, x2, ") = (", x2, ")
 F(x1, c2, c3) = (c2 OP c3, c2, c3)

• Monotonic? Distributes over %?

CS 4120 Introduction to Compilers 7

Not MOP!

F((!, 1, 2) % (!, 2, 1)) $ F(!, 1, 2)%F(!, 2, 1)

x2 = 1

x3 = 2

x2 = 2

x3 = 1

x1 = x2 + x3

(!, 1, 2) (!, 2, 1)

(!, 1, 2) % (!, 2, 1)=(!, ", ")

(", ", ")

CS 4120 Introduction to Compilers 8

Loops
• Most execution time in most programs is spent in

loops: 90/10 is typical
• Most important targets of optimization: loops
• Loop optimizations:

– loop-invariant code motion
– loop unrolling
– loop peeling
– strength reduction of expressions containing induction

variables
– removal of bounds checks
– loop tiling

• When to apply loop optimizations?

CS 4120 Introduction to Compilers 9

High-level optimization?
• Loops may be hard to recognize in IR or

quadruple form -- should we apply loop
optimizations to source code or high-level
IR?
– Many kinds of loops: while, do/while, continue
– loop optimizations benefit from other IR-level

optimizations and vice-versa -- want to be
able to interleave

• Problem: identifying loops in flowgraph

CS 4120 Introduction to Compilers 10

Definition of a loop
• A loop is a set of nodes in the control flow graph,

with one distinguished node called the header (entry
point)

• Every node is reachable
from header, header
reachable from every
node: strongly-connected
component

• No entering edges from
outside except to header

• nodes with outgoing
edges: loop exit nodes

header

loop exit

CS 4120 Introduction to Compilers 11

Nested loops
• Control-flow graph may contain many loops,

and loops may contain each other

• Control-flow analysis : identify the loops
and nesting structure:

inner loop

control
tree

CS 4120 Introduction to Compilers 12

Dominators
• CFA based on idea of dominators

• Node A dominates node B if the only way
to reach B from start node is through A

• Edge in flowgraph is a
back edge if destination
dominates source

• A loop contains at least
one back edge

1

2

54
3

back edge

CS 4120 Introduction to Compilers 13

Dominator tree
• Domination is transitive; if A dominates B and B

dominates C, then A dominates C
• Domination is anti-symmetric
• Every flowgraph has dominator tree (Hasse diagram

of domination relation)

1

2

3 4

5 6

78

9 10

1

2

3 4

5 6

78

9 10

CS 4120 Introduction to Compilers 14

Dominator dataflow analysis
• Forward analysis; out[n] is set of nodes dominating n

• “A node B is dominated by another node A if A
dominates all of the predecessors of B”

in[n] = &n’%pred[n] out[n’]

• “Every node dominates itself”

out[n] = in[n] & {n}

• Formally: L = sets of nodes ordered by ', flow
functions Fn(x) = x & {n}, %=&, ! = {all n}
(Standard iterative analysis gives best soln

CS 4120 Introduction to Compilers 15

Completing control-flow analysis
• Dominator analysis gives all back edges

• Each back edge n)h has an associated natural loop with h
as its header: all nodes reachable from h that reach n without
going through h

• For each back edge, find natural loop
• Nest loops based on subset

relationship between natural loops
• Exception: natural loops may share

same header; merge them into
larger loop.

• Control tree built using nesting
relationship

1

2

3 4

5 6

78

9 10

