%,
01101
o

CS 4120
Introduction to Compilers

Andrew Myers

Cornell University

Lecture 24: Data-flow, control-flow analysis
26 Oct 09

“Classic” constant propagation

« ldea: propagate and fold integer constants
in one pass

X=1; X=1;
y = 5+X; y = 6;
Z=Yy; z = 36;

o Information about a single variable:

i. Variable never defined
ii. Variable has single constant value

iii. Variable has multiple values

CS 4120 Introduction to Compilers 2

One-variable Const. Prop.

never
defined constant constant cl\ ?nstant c,
constant multiple
Full lattice:

//\\\\
\\\I//

CS 4120 Introduction to Compilers

Rest of definition

« Flow function forx =x OP ¢,
Fo(r) =+
F(L)=1
F.(c,)=c,0Pc,
« Flow function is monotonic, distributive:
iterative solution works, gives MOP

« What about multiple variables x;...x,?
Want tuple (v,,...0,,),

CS 4120 Introduction to Compilers 4

Multiple vars
Dataflow value is a tuple (v,,...v,)), each v; in Iam:el._/// \\\

2 -1 0 23 ...

N\

Set of tuples (v,,...,u,,) is also a lattice
under component-wise ordering:
V) EQ V) = V0, EV
Vyely) M@V, = (0,100, 1T,)
For any two lattices L, L,, have product lattice LixL, (v, v,)

S V,) v, EV, &V,EV,

Tuple dataflow values are in Lx...xL = L

CS 4120 Introduction to Compilers 5

Flow functions

. Consider x, = x, OP x,
F(x, T,x3)=(T, T, x3)
F(x, %, T) = (T, X, T)
F(x, L,x3)=(L, 1,x,)
F(x;, %, 1) =(L,%, 1)
F(x, ¢, ¢;) = (c, OP ¢, ¢, C;)

« Monotonic? Distributes over 1?

CS 4120 Introduction to Compilers

Not MOP!

X, =1 |X,=2
l J

X3 =1

(1.1, 2) (T,2,1)
\ /(T, 1,2) (7,2, D=(T, L, 1)

+ X3
(J_, 1,1)

F(T,1,2)11(T,2,1)=F(T,1,2)MNFT,2,1)

CS 4120 Introduction to Compilers 7

Loops
+ Most execution time in most programs is spent in
loops: 90/10 is typical

« Most important targets of optimization: loops
+ Loop optimizations:

- loop-invariant code motion

loop unrolling

loop peeling

strength reduction of expressions containing induction
variables

removal of bounds checks

loop tiling
o When to apply loop optimizations?

CS 4120 Introduction to Compilers

High-level optimization?

« Loops may be hard to recognize in IR or
quadruple form -- should we apply loop
optimizations to source code or high-level
IR?

— Many kinds of loops: while, do/while, continue
— loop optimizations benefit from other IR-level

optimizations and vice-versa -- want to be
able to interleave

« Problem: identifying loops in flowgraph

CS 4120 Introduction to Compilers 9

Nested loops
« Control-flow graph may contain many loops,

and loops may contain each other

« Control-flow analysis : identify the loops

and nesting structure:
control

tree

inner loop

CS 4120 Introduction to Compilers 11

Definition of a loop

A loop is a set of nodes in the control flow graph,
with one distinguished node called the header (entry
point)

Every node is reachable

from header, header

reachable from every

node: strongly-connected header

component loop exit
No entering edges from

outside except to header

nodes with outgoing

edges: loop exit nodes

CS 4120 Introduction to Compilers 10

Dominators

CFA based on idea of dominators
Node A dominates node B if the only way
to reach B from start node is through A
. . ©)
Edge in flowgraphis a \
back edge if destination / /@\@ back edge
@
©)

dominates source

A loop contains at least
one back edge

CS 4120 Introduction to Compilers 12

Dominator tree

Domination is transitive; if A dominates B and B
dominates C, then A dominates C

Domination is anti-symmetric

Every flowgraph has dominator tree (Hasse diagram
of domination relation)

O
GF———® © ®

CS 4120 Introduction to Compilers 13

Completing control-flow analysis
Dominator analysis gives all back edges
Each back edge n—h has an associated natural loop with h
as its header: all nodes reachable from h that reach n without
going through h
For each back edge, find natural loop

Nest loops based on subset
relationship between natural loops

Exception: natural loops may share
same header; merge them into
larger loop.

Control tree built using nesting
relationship

CS 4120 Introduction to Compilers 15

Dominator dataflow analysis

« Forward analysis; out[n] is set of nodes dominating n

« “Anode B is dominated by another node A if A
dominates all of the predecessors of B”

in[n] - rWn'Epred[n] OUt[n’]

« “Every node dominates itself”
out[n] =in[n] U {n}
« Formally: L = sets of nodes ordered by C, flow
functions IV (x) =x U {n}, =N, T = {all n}

=> Standard iterative analysis gives best soln

CS 4120 Introduction to Compilers 14

