
1

CS 412/413 Spring 2007 Introduction to Compilers 1

CS412/CS413

Introduction to Compilers
Tim Teitelbaum

Lecture 32: More Instruction Selection
15 Apr 07

CS 412/413 Spring 2007 Introduction to Compilers 2

Instruction Selection

1. Translate low-level IR code into DAG representation

2. Then find a good tiling of the DAG
- disjoint set of tiles that cover the DAG
- Maximal munch algorithm
- Dynamic programming algorithm

CS 412/413 Spring 2007 Introduction to Compilers 3

DAG Tiling

• Goal: find a good covering of DAG with tiles

• Problem: need to know what variables are in registers

• Assume abstract assembly:
– Machine with infinite number of registers
– Temporary/local variables stored in registers
– Parameters/heap variables: use memory accesses

CS 412/413 Spring 2007 Introduction to Compilers 4

Problems
• Classes of registers

– Registers may have specific purposes
– Example: Pentium multiply instruction

- multiply register eax by contents of another register
- store result in eax (low 32 bits) and edx (high 32 bits)
- need extra instructions to move values into eax

• Two-address machine instructions
– Three-address low-level code
– Need multiple machine instructions for a single tile

• CISC versus RISC
– Complex instruction sets => many possible tiles and tilings
– Example: multiple addressing modes (CISC) versus

load/store architectures (RISC)

CS 412/413 Spring 2007 Introduction to Compilers 5

Pentium ISA

• Pentium: two-address CISC architecture

• Multiple addressing modes: source operands may be
– Immediate value: imm
– Register: reg
– Indirect address: [reg], [imm], [reg+imm],
– Indexed address: [reg+reg’], [reg+imm*reg’],

[reg+imm*reg’+imm’]

• Destination operands = same, except immediate values

CS 412/413 Spring 2007 Introduction to Compilers 6

Example Tiling
• Consider: t = t + i

t = temporary variable
i = parameter

• Need new temporary registers
between tiles (unless operand
node is labeled with temporary)

• Resulting code:
mov %ebp, t0
sub $20, t0
mov 0(t0), t1
add t1, t

ebp 20
-

load

=

t +

t
t1

{i}

t0

2

CS 412/413 Spring 2007 Introduction to Compilers 7

Tiles

+

1
t1

mov t1, t2
add $1, t2

• Tiles capture compiler’s understanding of
instruction set

• Each tile: sequence of machine instructions that
match a subgraph of the DAG

• May need additional move instructions
• Tiling = cover the DAG with tiles

t2

CS 412/413 Spring 2007 Introduction to Compilers 8

Some Tiles

mov t2, t1

+
t2

mov t2, t3
add t1, t3

t1

t3

*
t2

mov t1, %eax
mul t2
mov %eax, t3 t1

t3

store

+ 10

t2t1

mov
$10, 0(t1,t2)

=
t2t1

CS 412/413 Spring 2007 Introduction to Compilers 9

Conditional Branches

tjump

Lt1

test t1,t1
jnz L

tjump

L

t1

==

t2

cmp t1,t2
je L

• How to tile a conditional jump?
• Fold comparison into tile

CS 412/413 Spring 2007 Introduction to Compilers 10

Maximal Munch Algorithm
• Maximal Munch = find largest tiles (greedy algorithm)
• Start from top of tree
• Find largest tile that matches top node
• Tile remaining subtrees recursively

store

4+
load

+
ebp 8

*
4 load

+
ebp 12

CS 412/413 Spring 2007 Introduction to Compilers 11

DAG Representation
• DAG: a node may have multiple parents
• Algorithm: same, but a node with multiple parents

occurs inside a tile only if all its parents are in the tile

store

+
load

+
ebp 8

*
4 load

+
ebp 12

CS 412/413 Spring 2007 Introduction to Compilers 12

Example

x = x + 1;

ebp
+

8

store

load

+

ebp 8

+

1

3

CS 412/413 Spring 2007 Introduction to Compilers 13

Example

x = x + 1;

mov 8(%ebp), t1
mov t1, t2
add $1, t2
mov t2, 8(%ebp)

ebp
+

8

t2
store

load

+

ebp 8

+

1
t1

CS 412/413 Spring 2007 Introduction to Compilers 14

Alternate (CISC) Tiling

add $1, 8(%ebp)

x = x + 1;

=
+

const
r/m32

r/m32

store

ebp
+

8

+

1

+

ebp 8 load

CS 412/413 Spring 2007 Introduction to Compilers 15

ADD Expression Tiles

mov t2, t1
add r/m32, t1

+

t2

t1

t3

+

t2 r/m32

t1

+

t2 const

t1

mov t2, t1
add imm32, t1

CS 412/413 Spring 2007 Introduction to Compilers 16

ADD Statement Tiles

=
+

constr/m32

Intel Architecture

add r/m32, r32
add r32, r/m32

add imm32, %eax
add imm32, r/m32
add imm8, r/m32

=
+

r/m32

=
+

r/m32r32

CS 412/413 Spring 2007 Introduction to Compilers 17

Designing Tiles
• Only add tiles that are useful to compiler
• Many instructions will be too hard to use

effectively or will offer no advantage
• Need tiles for all single-node trees to guarantee

that every tree can be tiled, e.g.

mov t2, t1
add t3, t1 +

t2

t1

t3

CS 412/413 Spring 2007 Introduction to Compilers 18

More Handy Tiles

lea instruction computes a memory address

lea (t1,t2), t3 +
t2t1

t3

+

lea c1(t1,t2,c2), t3 *

c2t1 t2

t3

+

c1

4

CS 412/413 Spring 2007 Introduction to Compilers 19

br t1, L

Matching Jump for RISC
• As defined in lecture, have

tjump(cond, destination)
fjump(cond, destination)

• Our tjump/fjump translates easily to RISC ISAs that
have explicit comparison result

tjump

L
t1 cmplt t2, t3, t1
<

t2 t3

MIPS

CS 412/413 Spring 2007 Introduction to Compilers 20

Condition Code ISA

• Pentium: condition encoded in jump instruction
• cmp: compare operands and set flags
• jcc: conditional jump according to flags

cmp t1, t2
jl L

set condition codes

test condition codes

tjump

L<

t2 t3

CS 412/413 Spring 2007 Introduction to Compilers 21

Fixed-register instructions
mul r/m32

Multiply value in register eax
Result: low 32 bits in eax, high 32 bits in edx

jecxz L
Jump to label L if ecx is zero

add r/m32, %eax
Add to eax

• No fixed registers in low IR except frame pointer
• Need extra move instructions

CS 412/413 Spring 2007 Introduction to Compilers 22

Implementation

• Maximal Munch: start from top node
• Find largest tile matching top node and all of the

children nodes
• Invoke recursively on all children of tile
• Generate code for this tile
• Code for children will have been generated already in

recursive calls

• How to find matching tiles?

CS 412/413 Spring 2007 Introduction to Compilers 23

Matching Tiles
abstract class LIR_Stmt {

Assembly munch();
}
class LIR_Assign extends LIR_Stmt {

LIR_Expr src, dst;
Assembly munch() {

if (src instanceof IR_Plus &&
((IR_Plus)src).lhs.equals(dst) &&
is_regmem32(dst)) {

Assembly e = ((LIR_Plus)src).rhs.munch();
return e.append(new AddIns(dst,

e.target()));
}
else if ...

}
}

=
+

r/m32

CS 412/413 Spring 2007 Introduction to Compilers 24

Tile Specifications

• Previous approach simple, efficient, but hard-codes tiles
and their priorities

• Another option: explicitly create data structures
representing each tile in instruction set
– Tiling performed by a generic tree-matching and

code generation procedure
– Can generate from instruction set description:

code generator generators
– For RISC instruction sets, over-engineering

5

CS 412/413 Spring 2007 Introduction to Compilers 25

How Good Is It?

• Very rough approximation on modern pipelined
architectures: execution time is number of tiles

• Maximal munch finds a locally optimal (two adjacent
tiles can never be combined into one) but not
necessarily globally optimum tiling (least cost of all
covers)

• Metric used: tile size

CS 412/413 Spring 2007 Introduction to Compilers 26

Improving Instruction Selection

• Because it is greedy, Maximal Munch does not
necessarily generate best code

– Always selects largest tile, but not necessarily the
fastest instruction

– May pull nodes up into tiles inappropriately – it may
be better to leave below (use smaller tiles above and
larger, or faster tiles below)

• Better to use dynamic programming, an optimization
technique that uses memoization to assure that
subproblems are never solved more than once.

CS 412/413 Spring 2007 Introduction to Compilers 27

Timing Cost Model
• Idea: associate cost with each tile (say proportional to

number of cycles to execute)
– may not be a good metric on modern architectures

• Total execution time is sum of costs of all tiles

Total cost: 5

Cost=1

Cost = 2

Cost = 2ebp
+

8

store

load

+

ebp 8

+

1

CS 412/413 Spring 2007 Introduction to Compilers 28

Finding globally optimum tiling

• Goal: find minimum total cost tiling of DAG

• Algorithm: for every node, find minimum total cost tiling
of that node and subgraph below it

• Lemma: Given minimum cost tiling of all nodes in
subgraph, we can find minimum cost tiling of the node
by trying out all possible tiles matching the node

• Therefore: start from leaves, work upward to top node

CS 412/413 Spring 2007 Introduction to Compilers 29

Dynamic Programming: a[i]

load

+

load *

+

ebp 8

4 load

+
ebp 12

mov 8(%ebp), t1
mov 12(%ebp), t2
mov (t1,t2,4), t3

CS 412/413 Spring 2007 Introduction to Compilers 30

Recursive Implementation

• Traverse DAG recursively, and for each node n, record
<t,c>, where
– t is the best tile to use for subgraph rooted at n,
– c is the total cost of tiling the subgraph rooted at n if t is chosen.

• To compute <t,c> for node n
– Consider every tile t’ that matches rooted at n, and compute

total cost c’ = cost of tile t’ + sum of the costs of tiling the
subgraphs rooted at the leaves of t’ (which costs can be
computed recursively and memoized)

– Store lowest-cost tile t’ and its total cost c’
• To emit code, traverse least-cost tiles recursively and emit

code in postorder

6

CS 412/413 Spring 2007 Introduction to Compilers 31

Memoization
class IR_Move extends IR_Stmt {

IR_Expr src, dst;
Assembly best; // initialized to null
int optTileCost() {

if (best != null) return best.cost();
if (src instanceof IR_Plus &&
((IR_Plus)src).lhs.equals(dst) && is_regmem32(dst)) {
int src_cost = ((IR_Plus)src).rhs.optTileCost();
int cost = src_cost + CISC_ADD_COST;
if (best == null || cost < best.cost())

best = new AddIns(dst, e.target); }
…consider all other tiles…
return best.cost();

}
}

=
+

r/m32

CS 412/413 Spring 2007 Introduction to Compilers 32

Problems with Model
• Modern processors:

– execution time not sum of tile times
– instruction order matters

• Processors pipeline instructions and execute
different pieces of instructions in parallel

• bad ordering (e.g. too many memory operations
in sequence) stalls processor pipeline

• processor can execute some instructions in
parallel (super-scalar)

– cost is merely an approximation
– instruction scheduling needed

CS 412/413 Spring 2007 Introduction to Compilers 33

Summary

• Can specify code generation process as a set of tiles
that relate low IR trees (DAGs) to instruction sequences

• Instructions using fixed registers problematic but can be
handled using extra temporaries

• Maximal Munch algorithm implemented simply as
recursive traversal

• Dynamic programming algorithm generates better code,
can be implemented recursively using memoization

• Real optimization will also require instruction scheduling

