CS412/CS413

Introduction to Compilers
Tim Teitelbaum

Lecture 32: More Instruction Selection
15 Apr 07

CS 412/413 Spring 2007 Introduction to Compilers

Instruction Selection

1. Translate low-level IR code into DAG representation

2. Then find a good tiling of the DAG
- disjoint set of tiles that cover the DAG
- Maximal munch algorithm
- Dynamic programming algorithm

CS 412/413 Spring 2007 Introduction to Compilers 2

DAG Tiling
* Goal: find a good covering of DAG with tiles
* Problem: need to know what variables are in registers
* Assume abstract assembly:
— Machine with infinite number of registers

— Temporary/local variables stored in registers
— Parameters/heap variables: use memory accesses

CS 412/413 Spring 2007 Introduction to Compilers

Problems

* Classes of registers
— Registers may have specific purposes
— Example: Pentium multiply instruction
- multiply register eax by contents of another register
- store result in eax (low 32 bits) and edx (high 32 bits)
- need extra instructions to move values into eax

* Two-address machine instructions

— Three-address low-level code

— Need multiple machine instructions for a single tile
* CISC versus RISC

— Complex instruction sets => many possible tiles and tilings

— Example: multiple addressing modes (CISC) versus
load/store architectures (RISC)

CS 412/413 Spring 2007 Introduction to Compilers 4

Pentium ISA

* Pentium: two-address CISC architecture

* Multiple addressing modes: source operands may be
— Immediate value: imm
— Register: reg
— Indirect address: [reg], [imm], [reg+imm],

— Indexed address: [reg+reg’], [reg+imm*regT],
[reg+imm*reg’+imm’]

« Destination operands = same, except immediate values

CS 412/413 Spring 2007 Introduction to Compilers 5

Example Tiling

e Consider:t= t+i
t = temporary variable
i = parameter

* Need new temporary registers
between tiles (unless operand
node is labeled with temporary)

* Resulting code:
mov %ebp, t0
sub $20, t0
mov 0(t0), t1
add t1, t

CS 412/413 Spring 2007 Introduction to Compilers 6

Tiles

t2

mov t1, t2
o add $1, t2

« Tiles capture compiler’s understanding of
instruction set

* Each tile: sequence of machine instructions that
match a subgraph of the DAG

* May need additional move instructions

« Tiling = cover the DAG with tiles

CS 412/413 Spring 2007 Introduction to Compilers

Some Tiles

t ©2 $10, 0(t1,t2)

tl t2
t3
mov t2, t3 N mov t1, %eax 3
add t1, t3 o mul t2
t1 9
mov %eax, t3 t ©
CS 412/413 Spring 2007 Introduction to Compilers 8

Conditional Branches

* How to tile a conditional jump?
* Fold comparison into tile

G

tl 7]
test t1,t1 cmp t1,t2
jnz L jeL

CS 412/413 Spring 2007 Introduction to Compilers

Maximal Munch Algorithm

Maximal Munch = find largest tiles (greedy algorithm)

Start from top of tree

Find largest tile that matches top node
Tile remaining subtrees recursively

+
~

/
load
|
+
/N

ebp 8

CS 412/413 Spring 2007

store
PN

4

*
AN
4 load
|
+
/N
ebp 12

Introduction to Compilers 10

DAG Representation

* DAG: a node may have multiple parents

* Algorithm: same, but a node with multiple parents
occurs inside a tile only if all its parents are in the tile

store
/

+
PN
load *
| /N
+ 4 load

/N

|
ebp 8 PN
ebp 12

CS 412/413 Spring 2007 Introduction to Compilers

11

Example

X=X+1;

+

/N

ebp 8

CS 412/413 Spring 2007

store

+

/N

load 1

+

7N\

ebp 8

Introduction to Compilers 12

Example

mov 8(%ebp), t1

mov t1, t2
add $1, t2

mov t2, 8(%ebp)

CS 412/413 Spring 2007 Introduction to Compilers 13

Alternate (CISC) Tiling

X=X+1;

add $1, 8(%ebp)

s
r/m\§2 / N

const
r/m32

CS 412/413 Spring 2007 Introduction to Compilers 14

ADD Expression Tiles

t1
t1
mov t2, t1 @
add r/m32, t1 t2
2 13
t1
mov t2, tl
add imm32, t1 t2
CS 412/413 Spring 2007 Introduction to Compilers 15

ADD Statement Tiles

(>
)
~ N\

r/m32 const

Intel Architecture

add imm32, %eax
add imm32, r/m32
add imm8, r/m32

add r32, r/m32
add r/m32, r32

CS 412/413 Spring 2007 Introduction to Compilers 16

Designing Tiles

» Only add tiles that are useful to compiler

e Many instructions will be too hard to use
effectively or will offer no advantage

» Need tiles for all single-node trees to guarantee
that every tree can be tiled, e.g.

tl

mov t2, t1
add t3, t1

t2 t3

CS 412/413 Spring 2007 Introduction to Compilers 17

More Handy Tiles

lea instruction computes a memory address

lea (t1,t2), t3

lea c1(t1,t2,c2), t3

CS 412/413 Spring 2007 Introduction to Compilers 18

Matching Jump for RISC

« As defined in lecture, have
tjump(cond, destination)
fjump(cond, destination)

* Our tjump/fjump translates easily to RISC ISAs that
have explicit comparison result

MIPS
S cmplt 2, t3, t1

br ti,L

t2 t3

CS 412/413 Spring 2007 Introduction to Compilers 19

Condition Code ISA

* Pentium: condition encoded in jump instruction
e cmp: compare operands and set flags
e jcc: conditional jump according to flags

set condition codes

cmp t1, t2

23 ! L\

test condition codes

CS 412/413 Spring 2007 Introduction to Compilers 20

Fixed-register instructions

mul r/m32

Multiply value in register eax

Result: low 32 bits in eax, high 32 bits in edx
jecxz L

Jump to label L if ecx is zero
add r/m32, %eax

Add to eax

« No fixed registers in low IR except frame pointer
* Need extra move instructions

CS 412/413 Spring 2007 Introduction to Compilers 21

Implementation

e Maximal Munch: start from top node

* Find largest tile matching top node and all of the
children nodes

« Invoke recursively on all children of tile
« Generate code for this tile

« Code for children will have been generated already in
recursive calls

* How to find matching tiles?

CS 412/413 Spring 2007 Introduction to Compilers 22

Matching Tiles

abstract class LIR_Stmt {
Assembly munch();

}
class LIR_Assign extends LIR_Stmt {
LIR_Expr src, dst;
Assembly munch() {
if (src instanceof IR_Plus &&
((IR_Plus)src).lhs.equals(dst) &&
is_regmem32(dst)) {

Assembly e = ((LIR_Plus)src).rhs.munch();

return e.append(new AddIns(dst,
e.target()));
}

else if ...
}
}

CS 412/413 Spring 2007 Introduction to Compilers 23

Tile Specifications

« Previous approach simple, efficient, but hard-codes tiles
and their priorities

« Another option: explicitly create data structures
representing each tile in instruction set

— Tiling performed by a generic tree-matching and
code generation procedure

— Can generate from instruction set description:
code generator generators
— For RISC instruction sets, over-engineering

CS 412/413 Spring 2007 Introduction to Compilers 24

How Good Is It?

« Very rough approximation on modern pipelined
architectures: execution time is number of tiles

* Maximal munch finds a locally optimal (two adjacent
tiles can never be combined into one) but not
necessarily globally optimum tiling (least cost of all
covers)

* Metric used: tile size

CS 412/413 Spring 2007 Introduction to Compilers 25

Improving Instruction Selection

» Because it is greedy, Maximal Munch does not
necessarily generate best code
— Always selects largest tile, but not necessarily the
fastest instruction
— May pull nodes up into tiles inappropriately — it may
be better to leave below (use smaller tiles above and
larger, or faster tiles below)
« Better to use dynamic programming, an optimization
technique that uses memoization to assure that
subproblems are never solved more than once.

CS 412/413 Spring 2007 Introduction to Compilers 26

Timing Cost Model

* ldea: associate cost with each tile (say proportional to
number of cycles to execute)

— may not be a good metric on modern architectures
* Total execution time is sum of costs of all tiles

Total cost: 5

CS 412/413 Spring 2007 Introduction to Compilers 27

Finding globally optimum tiling
e Goal: find minimum total cost tiling of DAG

e Algorithm: for every node, find minimum total cost tiling
of that node and subgraph below it

e Lemma: Given minimum cost tiling of all nodes in
subgraph, we can find minimum cost tiling of the node
by trying out all possible tiles matching the node

* Therefore: start from leaves, work upward to top node

CS 412/413 Spring 2007 Introduction to Compilers 28

Dynamic Programming: a[i]

mov 8(%ebp), t1
mov 12(%ebp), t2
mov (t1,t2,4), t3

CS 412/413 Spring 2007 Introduction to Compilers 29

Recursive Implementation

* Traverse DAG recursively, and for each node n, record
<t,c>, where
— tis the best tile to use for subgraph rooted at n,
— c is the total cost of tiling the subgraph rooted at n if t is chosen.
* To compute <t,c> for node n
— Consider every tile t' that matches rooted at n, and compute
total cost ¢’ = cost of tile t' + sum of the costs of tiling the
subgraphs rooted at the leaves of t' (which costs can be
computed recursively and memoized)

— Store lowest-cost tile t' and its total cost ¢’

* To emit code, traverse least-cost tiles recursively and emit
code in postorder

CS 412/413 Spring 2007 Introduction to Compilers 30

Memoization

class IR_Move extends IR_Stmt {
IR_Expr src, dst;
Assembly best; // initialized to null
int optTileCost() {
if (best != null) return best.cost();
if (src instanceof IR_Plus &&
((IR_Plus)src).lhs.equals(dst) && is_regmem32(dst)) {
int src_cost = ((IR_Plus)src).rhs.optTileCost();
int cost = src_cost + CISC_ADD_COST;
if (best == null || cost < best.cost())
best = new AddIns(dst, e.target); }
...consider all other tiles...
return best.cost();
}
}

CS 412/413 Spring 2007 Introduction to Compilers 31

Problems with Model

* Modern processors:
— execution time not sum of tile times
— instruction order matters

* Processors pipeline instructions and execute
different pieces of instructions in parallel

* bad ordering (e.g. too many memory operations
in sequence) stalls processor pipeline

* processor can execute some instructions in
parallel (super-scalar)

— cost is merely an approximation
— instruction scheduling needed

CS 412/413 Spring 2007 Introduction to Compilers 32

Summary

Can specify code generation process as a set of tiles
that relate low IR trees (DAGS) to instruction sequences

Instructions using fixed registers problematic but can be
handled using extra temporaries

Maximal Munch algorithm implemented simply as
recursive traversal

Dynamic programming algorithm generates better code,
can be implemented recursively using memoization

Real optimization will also require instruction scheduling

CS 412/413 Spring 2007 Introduction to Compilers 33

