
1

CS 412/413 Spring 2007 Introduction to Compilers 1

CS412/CS413

Introduction to Compilers
Tim Teitelbaum

Lecture 31: Instruction Selection
13 Apr 07

CS 412/413 Spring 2007 Introduction to Compilers 2

Backend Optimizations

• Instruction selection
– Translate low-level IR to assembly instructions
– A machine instruction may model multiple IR instructions
– Especially applicable to CISC architectures

• Register Allocation
– Place variables into registers
– Avoid spilling variables on stack

CS 412/413 Spring 2007 Introduction to Compilers 3

Instruction Selection
• Different sets of instructions in low-level IR and in the

target machine
• Instruction selection = translate low-level IR to

assembly instructions on the target machine

• Straightforward solution: translate each low-level IR
instruction to a sequence of machine instructions

• Example:

x = y + z

mov y, r1
mov z, r2
add r2, r1
mov r1, x

CS 412/413 Spring 2007 Introduction to Compilers 4

Instruction Selection
• Problem: straightforward translation is inefficient

– One machine instruction may perform the computation in
multiple low-level IR instructions

– Excessive memory traffic

• Consider a machine that includes the following instructions:
add r2, r1 r1 ← r1+r2
mulc c, r1 r1 ← r1*c
load r2, r1 r1 ← *r2
store r2, r1 *r1 ← r2
movem r2, r1 *r1 ← *r2
movex r3, r2, r1 *r1 ← *(r2+r3)

CS 412/413 Spring 2007 Introduction to Compilers 5

Example

• Consider the computation:
a[i+1] = b[j]

• Assume a,b, i, j are global variables
register ra holds address of a
register rb holds address of b
register ri holds value of i
register rj holds value of j

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

CS 412/413 Spring 2007 Introduction to Compilers 6

Possible Translation

• Address of b[j]: mulc 4, rj
add rj, rb

• Load value b[j]: load rb, r1

• Address of a[i+1]: add 1, ri
mulc 4, ri
add ri, ra

• Store into a[i+1]: store r1, ra

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

2

CS 412/413 Spring 2007 Introduction to Compilers 7

Another Translation

• Address of b[j]: mulc 4, rj
add rj, rb

• Address of a[i+1]: add 1, ri
mulc 4, ri
add ri, ra

• Store into a[i+1]: movem rb, ra

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

CS 412/413 Spring 2007 Introduction to Compilers 8

Yet Another Translation

• Index of b[j]: mulc 4, rj

• Address of a[i+1]: add 1, ri
mulc 4, ri
add ri, ra

• Store into a[i+1]: movex rj, rb, ra

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

CS 412/413 Spring 2007 Introduction to Compilers 9

Issue: Instruction Costs
• Different machine instructions have different costs

– Time cost: how fast instructions are executed
– Space cost: how much space instructions take

• Example: cost = number of cycles
add r2, r1 cost=1
mulc c, r1 cost=10
load r2, r1 cost=3
store r2, r1 cost=3
movem r2, r1 cost=4
movex r3, r2, r1 cost=5

• Goal: find translation with smallest cost

CS 412/413 Spring 2007 Introduction to Compilers 10

How to Solve the Problem?

• Difficulty: low-level IR instruction
matched by a machine instructions
may not be adjacent

• Example: movem rb, ra

• Idea: use tree-like representation!
• Easier to detect matching

instructions

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

CS 412/413 Spring 2007 Introduction to Compilers 11

Tree Representation

a

4

*

+

store

b

j 4

*

+

load

• Goal: determine parts of the tree that
correspond to machine instructions

a[i+1] = b[j]

i 1

+

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

CS 412/413 Spring 2007 Introduction to Compilers 12

Tiles

• Tile = tree patterns (subtrees)
corresponding to machine instructions

movem rb, ra

a

4

*

+

store

b

j 4

*

+

load

i 1

+

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

Low-level IR:

t1 = j*4
t2 = b+t1
t3 = *t2
t4 = i+1
t5 = t4*4
t6 = a+t5
*t6 = t3

3

CS 412/413 Spring 2007 Introduction to Compilers 13

Tiling

• Tiling = cover the tree with disjoint tiles

movem rb, ra

a

4

*

+

store

b

j 4

*

+

load

i 1

+

Assembly:

mulc 4, rj
add rj, rb
add 1, ri
mulc 4, ri
add ri, ra
movem rb,ra

Assembly:

mulc 4, rj
add rj, rb
add 1, ri
mulc 4, ri
add ri, ra
movem rb,ra

CS 412/413 Spring 2007 Introduction to Compilers 14

Tiling

store rb, ra

a

4

*

+

store

b

j 4

*

+

load

i 1

+

a

4

*

+

store

b

j 4

*

+

load

i 1

+

movex rj, rb, ra

CS 412/413 Spring 2007 Introduction to Compilers 15

Directed Acyclic Graphs
• Tree representation: appropriate for instruction selection

– Tiles = subtrees → machine instructions

• DAG = more general structure for representing instructions
– Common sub-expressions represented by the same node
– Tile the expression DAG

• Example:
t = y+1
y = z*t
t = t+1
z = t*y y 1

+z

*

1

+

*

CS 412/413 Spring 2007 Introduction to Compilers 16

Big Picture

• What the compiler has to do:

1. Translate low-level IR code into DAG representation

2. Then find a good tiling of the DAG
- Maximal munch algorithm
- Dynamic programming algorithm

CS 412/413 Spring 2007 Introduction to Compilers 17

DAG Construction

• Input: a sequence of low IR instructions in a basic block
• Output: an expression DAG for the block

• Idea:
– Label each DAG node with variable holding that value
– Build DAG bottom-up

• A variable may have multiple values in a block
• Use different variable indices for different values of the

variable: t0, t1, t2, etc.

CS 412/413 Spring 2007 Introduction to Compilers 18

Algorithm
For each variable v do index[v] = 0

For each instruction I (in the order they appear)
For each variable v that I directly uses, with n=index[v]

if node vn doesn’t exist
create node vn , with label vn

Create expression node for instruction I, with children
{ vn | v ∈use[I] }

For each v∈def[I]
index[v] = index[v] + 1

If I is of the form x = … and n = index[x]
label the new node with xn

4

CS 412/413 Spring 2007 Introduction to Compilers 19

Example
t = y+1
y = z*t
t = t+1
z = t*y y 1

+z

*

1

+

*

y0

z0

1

+ t0

*
y1 +

1

t1

*
z1

