CS412/CS413

Introduction to Compilers
Tim Teitelbaum

Lecture 28: Dataflow Analysis Instances
4 Apr 07

CS 412/413 Spring 2007 Introduction to Compilers 1

Dataflow Analysis

Dataflow analysis
— sets up system of equations
— iteratively computes MFP

— Terminates because transfer functions are monotonic
and lattice has finite height

e Other possible solutions: FP, MOP, IDEAL

< All are safe solutions, but some are more precise:
FP E MFP E MOP E IDEAL

e MFP = MORP if transfer functions are distributive

* MOP and IDEAL are intractable

e Compilers use dataflow analysis and MFP

CS 412/413 Spring 2007 Introduction to Compilers 2

Dataflow Analysis Instances

» Apply dataflow framework to several analysis
problems:
— Live variable analysis
— Available expressions
— Reaching definitions
— Constant folding

« Discuss:
— Implementation issues
— Classification of dataflow analyses

CS 412/413 Spring 2007 Introduction to Compilers 3

Problem 1: Live Variables

« Compute live variables at each program point
« Live variable = variable whose value may be used later,
in some execution of the program

« Dataflow information: sets of live variables
« Example: variables {x,z} may be live at program point p
* Is a backward analysis

* LetV = set of all variables in the program
« Lattice (L, E), where:
— L =2V (power set of V, i.e., set of all subsets of V)
— Partial order E is set inclusion: 2
S,ES, iff $,25,

CS 412/413 Spring 2007 Introduction to Compilers 4

LV: The Lattice

« Consider set of variables V = {x,y,z}

« Partial order: 2 1%}

* Set V is finite implies
lattice has finite height |

\
_ o by B
- Meet operator: U

(set union: out[B] is union | |

of in[BT, for all Besuce®) ~ GYF Xz} {y.z}
* Top element: & | /

(empty set) {xy.z}

* Smaller sets of live variables = more precise analysis
« All variables may be live = least precise

CS 412/413 Spring 2007 Introduction to Compilers 5

LV: Dataflow Equations

* Equations:
in[B] = Fy(out[B]), for all B
out[B] = u{in[B"] | B’esucc(B)}, for all B
out[B,] =X,

* Meaning of union meet operator:

“A variable is live at the end of a basic block B if it
is live at the beginning of one of its successor
blocks”

CS 412/413 Spring 2007 Introduction to Compilers 6

LV: Transfer Functions

« Transfer functions for basic blocks are composition of transfer
functions of instructions in the block

« Define transfer functions for instructions

« General form of transfer functions:
F,(X) = (X —def[1]) u use[l]
where:
def[1] = set of variables defined (written) by |
use[I] = set of variables used (read) by |

* Meaning of transfer functions:

“Variables live before instruction I include: (1) variables live
after I, but not written by I, and (2) variables used by 1”

CS 412/413 Spring 2007 Introduction to Compilers 7

LV: Transfer Functions

« Define def/use for each type of instruction

iflisx=yOPz: use[l] = {y, z} def[1] = {x}
if lisx=0Py : use[l] = {y} def[1] = {x}
iflisx=y : use[l] = {y} def[I] = {x}
if lisx =addry : use[l] = {} def[1] = {x}
if 1is if (x) : use[l] = {x} def[l] = {}
if lisreturn x : use[l] = {x} def[l] = {3
if Lisx = Ty, yp) = usell] = {yy,.o vt
def[1] = {x}

« Transfer functions F,(X) = (X —def[1]) U use[l]

« For each F,, def[I] and use[l] are constants: they don’'t
depend on input information X

CS 412/413 Spring 2007 Introduction to Compilers 8

LV: Monotonicity

« Are transfer functions: F,(X) = (X — def[1]) u use[l]
monotonic?

* Because def[l] is constant, X — def[I] is monotonic:
X, 2 X, implies X, — def[I] 2 X, — def[l]

« Because use[l] is constant, Y U use[l] is monotonic:
Y, 2Y, implies Y, u use[l] 2 Y, u use[l]

= Put pieces together: F,(X) is monotonic

X1 2 X, implies
(X, — def[1]) u use[l] 2 (X, — def[I]) u use[l]

CS 412/413 Spring 2007 Introduction to Compilers 9

LV: Distributivity

« Are transfer functions: F,(X) = (X — def[1]) u use[l]
distributive?

« Since def[I] is constant: X — def[I] is distributive:
(X, UXy) —def[l] = (X, —def[I]) u (X, — def[l])
because: (aub)-c=(a-c)u(b-c)

« Since use[l] is constant: Y u use[l] is distributive:
(Yo uYy) uuse[l] = (Y, uuse[l]) u(Y,n use[l])
because: (aub)uc=(auc)u(buc)

« Put pieces together: F (X) is distributive

Fi(X U Xp) = Fi(Xp) U Fi(Xp)

CS 412/413 Spring 2007 Introduction to Compilers 10

Live Variables: Summary

e Lattice: (2Y, 2); has finite height

* Meet is set union, top is empty set

* Is a backward dataflow analysis

« Dataflow equations:
in[B] = Fg(out[B]), for all B
out[B] = u{in[B] | B’esucc(B)}, for all B
out[B.] =X,

« Transfer functions: F (X) = (X — def[I]) u use[l]
- are monotonic and distributive

« Iterative solving of dataflow equation:
- terminates
- computes MOP solution

CS 412/413 Spring 2007 Introduction to Compilers 11

Problem 2: Available Expressions

« Compute available expressions at each program point

= Available expression = expression evaluated in all program
executions, and its value would be the same if re-evaluated

« Is similar to available copies for constant propagation

« Dataflow information: sets of available expressions
« Example: expressions {x+y, y-z} are available at point p
« Is a forward analysis

* Let E = set of all expressions in the program
« Lattice (L, E), where:
— L = 28 (power set of E, i.e., set of all subsets of E)
— Partial order E is set inclusion: 2
S,ES, iff S,28,

CS 412/413 Spring 2007 Introduction to Compilers 12

CS 412/413 Spring 2007

AE: The Lattice

Consider set of expressions = {x*z, x+y, y-z}
Denote e = x*z, f=x+y, g=y-z

e.f,

Partial order: € { g}

Set E is finite implies

lattice has finite height {e.f} {e.g} {f.g}

Meet operator: N | |
(set intersection) {e} {f} {9}

Top element: {e,f,g} %)

(set of all expressions)

Larger sets of available expressions = more precise analysis
No available expressions = least precise

Introduction to Compilers 13

AE: Dataflow Equations

« Equations:
out[B] = Fg(in[B]), for all B
in[B] = n {out[B"] | B’epred(B)}, for all B
in[B] =X,

* Meaning of intersection meet operator:

“An expression is available at entry of block B if it is
available at exit of all predecessor nodes”

CS 412/413 Spring 2007 Introduction to Compilers 14

CS 412/413 Spring 2007

AE: Transfer Functions

Define transfer functions for instructions

General form of transfer functions:
F,(X) = (X =Kill[1]) u gen[I]
where:
kill[1] = expressions “killed” by |
gen[l] = new expressions “generated” by |

Note: this kind of transfer function is typical for many
dataflow analyses!

Meaning of transfer functions: “Expressions available after

instruction 1 include: (1) expressions available before I, but
not killed by I, and (2) expressions generated by |”

Introduction to Compilers 15

AE: Transfer Functions

« Define kill/gen for each type of instruction
if lisx=yOPz: gen[l] ={yOPz} kill[1] = {E | xeE}
if lisx=0Py : gen[l] ={OPz} kill[1] = {E | xeE}

iflisx=y s gen[l] =} kill[1] = {E | xeE}
if lisx =addry: gen[l] ={} kill[1] = {E | xeE}
if 1is if (x) :ogen[l] ={} kill[1] = {3
if lisreturnx @ gen[l] ={} kill[l] = {3

if 1is x = f(y,,..., y,) : gen[l] = {} kill[1] = {E | xeE}
« Transfer functions F,(X) = (X —Kkill[1]) u gen[I]

* ... how about x = x OP y?

CS 412/413 Spring 2007 Introduction to Compilers 16

CS 412/413 Spring 2007

Available Expressions: Summary

Lattice: (25, €); has finite height

Meet is set intersection, top element is E

Is a forward dataflow analysis

Dataflow equations:
out[B] = Fg(in[B]), for all B
in[B] = N {out[B] | B'epred(B)}, for all B
in[BJ =X,

Transfer functions: F,(X) = (X —Kkill[1]) u gen[I]
- are monotonic and distributive

Iterative solving of dataflow equation:
- terminates
- computes MOP solution

Introduction to Compilers 17

Problem 3: Reaching Definitions

* Compute reaching definitions for each program point

» Reaching definition = definition of a variable whose assigned
value may be observed at current program point in some
execution of the program

« Dataflow information: sets of reaching definitions

« Example: definitions {d2, d7} may reach program point p
« Is a forward analysis

* Let D = set of all definitions (assignments) in the program
« Lattice (D, E), where:
— L = 2P (power set of D)
— Partial order E is set inclusion: 2
S,ES, iff S,28,

CS 412/413 Spring 2007 Introduction to Compilers 18

RD: The Lattice

« Consider set of expressions = {d1, d2, d3}
where d1: x =y, d2: x=x+1, d3: z=y-x

* Partial order: 2 @
« Set D is finite implies
lattice has finite height {dl} {d2} {d3}

| > > |

* Meet operator: U

(set union) {d1,d2} {d1,d3} {d2,d3}

* Top element: & |

(empty set) {d1,d2,d3}

« Smaller sets of reaching definitions = more precise analysis

« All definitions may reach current point = least precise

CS 412/413 Spring 2007 Introduction to Compilers

19

CS 412/413 Spring 2007

RD: Dataflow Equations

Equations:
out[B] = Fg(in[B]), for all B
in[B] = u{out[B’] | B'epred(B)}, for all B
in[B] =X,

Meaning of intersection meet operator:

“A definition reaches the entry of block B if it
reaches the exit of at least one of its predecessor
nodes”

Introduction to Compilers 20

RD: Transfer Functions

« Define transfer functions for instructions

* General form of transfer functions:
F,(X) = (X=Kill[1]) u gen[1]
where:
kill[I] = definitions “killed” by |
gen[l] = definitions “generated” by |

« Meaning of transfer functions: “Reaching definitions after

instruction 1 include: (1) reaching definitions before I, but not

killed by 1, and (2) reaching definitions generated by 1”

CS 412/413 Spring 2007 Introduction to Compilers

21

CS 412/413 Spring 2007

RD: Transfer Functions

Define kill/gen for each type of instruction
If 1 is a definition d that defines x:
gen[l] = {d} kill[1] = {d" | d’ defines x}

If 1 is not a definition:
gen[l] = {3 kill(iy = {3
Transfer functions F,(X) = (X — kill[I]) u gen[I]

They are monotonic and distributive
— For each F,, kill[l] and gen[I] are constants: they don’'t depend
on input information X

Introduction to Compilers 22

Reaching Definitions: Summary

e Lattice: (2P, 2); has finite height

* Meet is set union, top element is &

« Is a forward dataflow analysis

« Dataflow equations:
out[B] = Fg(in[B]), for all B
in[B] = u{out[B] | B’epred(B)}, for all B
in[B,] =X,

« Transfer functions: F (X) = (X = kill[l]) u gen[I]
- are monotonic and distributive

« Iterative solving of dataflow equation:

- terminates
- computes MOP solution

CS 412/413 Spring 2007 Introduction to Compilers

23

CS 412/413 Spring 2007

Implementation

Lattices in these analyses = power sets
Information in these analyses = subsets of a set
How to implement subsets?

. Set implementation

- Data structure with as many elements as the subset has
- Usually list implementation

. Bitvectors:

- Use a bit for each element in the overall set

- Bit for element x is: 1 if X is in subset, O otherwise
- Example: S = {a,b,c}, use 3 bits

- Subset {a,c} is 101, subset {b} is 010, etc.

Introduction to Compilers 24

Implementation Tradeoffs

« Advantages of bitvectors:
— Efficient implementation of set union/intersection:
set union is bitwise “or” of bitvectors
set intersection is bitwise “and” of bitvectors
— Drawback: inefficient for subsets with few elements

* Advantage of list implementation:
— Efficient for sparse representation
— Drawback: inefficient for set union or intersection

« In general, bitvectors work well if the size of the (original)
set is linear in the program size

CS 412/413 Spring 2007

Introduction to Compilers 25

Problem 4: Constant Folding

= Compute constant variables at each program point
= Constant variable = variable having a constant value on all
program executions

« Dataflow information: sets of constant values
* Example: {x=2, y=3} at program point p
* Is a forward analysis

* LetV = set of all variables in the program, nvar = |V|
* Let N = set of integer numbers
« Use a lattice over the set V x N
« Construct the lattice starting from a lattice for N
* Problem: (N, <) is not a complete lattice!
... why?

CS 412/413 Spring 2007 Introduction to Compilers 26

Constant Folding Lattice

e Second try: lattice (N U {T,L}, <) T
— Where L < n, forall neN |

— And n<T,forallneN ?

— Is complete! Il

0

e Meaning: '1
— v=T : don’'t know if v is constant _'2

— v=1: vis not constant !

=
1

CS 412/413 Spring 2007 Introduction to Compilers

27

Constant Folding Lattice

T
e Second try: lattice (N U {T,L}, <) B
— Where L < n, forall neN é
— And n<T,forall neN 1
— Is complete! Il
= Problem: ?
— Is incorrect for constant folding -Il
— Meet of two constants c#d is min(c,d) 2
— Meet of different constants should be L '
|
= Another problem: has infinite height ... 1
CS 412/413 Spring 2007 Introduction to Compilers 28

Constant Folding Lattice

« Solution: flat lattice L= (N U {T,L}, E
— Where L En, forall neN

— And nE T, forall neN
— And distinct integer constants are not comparable

T

— 7 I\
0o 1 2

2

I

L
« Note: meet of any two distinct numbers is L!

CS 412/413 Spring 2007 Introduction to Compilers

29

Constant Folding Lattice

Denote N*=N u {T, 1}
Use flat lattice L=(N*, E)

Constant folding lattice: L'=(V — N*, E)
* Where partial order on V — N* is defined as:
X Eq Y iff for each variable v: X(v) E Y(v)

e Can represent a function in V — N* as a set of
assignments: { {v,=c,}, {v,=c,}, ..., {v,=¢,} }

CS 412/413 Spring 2007 Introduction to Compilers 30

CF: Transfer Functions

« Transfer function for instruction I:
F,(X) = (X=Kill[1]) u gen[1]
where:
kill[1] = constants “killed” by |
gen[l] = constants “generated” by |
e X[v] =c e N*if {v=c} e X

e Iflisv =c (constant): gen[l] = {v=c} kill[l] = {v} x N*
e Iflisv=u+w: gen[l] = {v=e} Kkill[1] = {v} x N*
where e = X[u] + X[w], if X[u] and X[w] are not T, L
e=1,if X[ul = Lor X[w] =1
e=T,ifX[ul=TorXw]=T

CS 412/413 Spring 2007 Introduction to Compilers 31

CF: Transfer Functions
« Transfer function for instruction I:
F,(X) = (X=Kill[1]) u gen[1]
« Here gen[l] is not constant, it depends on X
* However transfer functions are monotonic (easy to prove)

e ... but are transfer functions distributive?

CS 412/413 Spring 2007 Introduction to Compilers 32

CF: Distributivity

* Example:

{x=2, y=3, z=T}-lY =3 y=2]_ {x=3, y=2, z=T}

{x=?, y=", z=7}
{x=?, y=", z=7}
« At join point, apply meet operator
* Then use transfer function for z=x+y
CS 412/413 Spring 2007 Introduction to Compilers 33

CF: Distributivity

* Example:

< %

1l

w N
1l

N W

< %
1l

{x=2, y=3, z=7} ~{x=3, y=2, z=T}

{x=1, y=1, z=T}

{x=1, y=1, z=1}

< Dataflow result (MFP) at the end: {x=L, y= 1, z=1}
* MOP solution at the end?

CS 412/413 Spring 2007 Introduction to Compilers 34

CF: Distributivity

* Example:

{x=2, y=3, z=1}-¥ T 3 y=2]. {x=3, y=2, z=T}

{x=1, y=1, z=T}

{x=1, y=1, z=1}

« Dataflow result (MFP) at the end: {x=L1, y=1, z=1}
« MOP solution at the end: {x=1, y=1, z=5} !

CS 412/413 Spring 2007 Introduction to Compilers 35

CF: Distributivity

* Example:

I
N W

<
I
w
< X
1l

{x=2, y=3, z=T}- - {x=3, y=2, z=T}

{x=1, y=1, z=T}

{x=1, y=1, z=1}
« Reason for MOP # MFP:
transfer function F of z=x+y is not distributive!
F(X; M Xg) # F(Xy) N F(Xp)
where X, = {x=2, y=3, z=T} and X, = {x=3, y=2, z=T}

CS 412/413 Spring 2007 Introduction to Compilers 36

Classification of Analyses

Forward analyses: information flows from

— CFG entry block to CFG exit block

— Input of each block to its output

— Output of each block to input of its successor blocks

— Examples: available expressions, reaching definitions,
constant folding

Backward analyses: information flows from

— CFG exit block to entry block

— Output of each block to its input

— Input of each block to output of its predecessor blocks
— Example: live variable analysis

CS 412/413 Spring 2007 Introduction to Compilers

37

Another Classification

* “may” analyses:

— information describes a property that MAY hold in SOME
executions of the program

— Usually: n=vu, T =0
— Hence, initialize info to empty sets
— Examples: live variable analysis, reaching definitions

e “must” analyses:

— information describes a property that MUST hold in ALL
executions of the program

— Usually: n=n, T =S
— Hence, initialize info to the whole set
— Examples: available expressions

CS 412/413 Spring 2007 Introduction to Compilers 38

