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Dataflow Analysis
• Dataflow analysis 

– sets up system of equations
– iteratively computes MFP
– Terminates because transfer functions are monotonic 

and lattice has finite height

• Other possible solutions: FP, MOP, IDEAL
• All are safe solutions, but some are more precise:

FP ⊑ MFP ⊑ MOP ⊑ IDEAL
• MFP = MOP if transfer functions are distributive 
• MOP and IDEAL are intractable
• Compilers use dataflow analysis and MFP
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Dataflow Analysis Instances
• Apply dataflow framework to several analysis 

problems:
– Live variable analysis
– Available expressions
– Reaching definitions
– Constant folding

• Discuss:
– Implementation issues
– Classification of dataflow analyses
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Problem 1: Live Variables
• Compute live variables at each program point
• Live variable = variable whose value may be used later, 

in some execution of the program

• Dataflow information: sets of live variables
• Example: variables {x,z} may be live at program point p
• Is a backward analysis

• Let V = set of all variables in the program
• Lattice (L, ⊑), where:

– L = 2V (power set of V, i.e., set of all subsets of V)
– Partial order ⊑ is set inclusion: ⊇

S1 ⊑ S2 iff S1 ⊇ S2
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LV: The Lattice
• Consider set of variables V = {x,y,z}
• Partial order: ⊇
• Set V is finite implies 

lattice has finite height

• Meet operator: ⋃
(set union: out[B] is union
of in[B’], for all B’∈succ(B) 

• Top element: ∅
(empty set)

• Smaller sets of live variables = more precise analysis
• All variables may be live = least precise

{x,y} {x,z} {y,z}

{x} {y} {z}

∅

{x,y,z}
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LV: Dataflow Equations
• Equations:

in[B] = FB(out[B]), for all B
out[B] = ⋃{in[B’] | B’∈succ(B)}, for all B 
out[Be]  = X0

• Meaning of union meet operator:
“A variable is live at the end of a basic block B if it 
is live at the beginning of one of its successor 
blocks”
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LV: Transfer Functions
• Transfer functions for basic blocks are composition of transfer 

functions of instructions in the block
• Define transfer functions for instructions

• General form of transfer functions:
FI(X) = ( X – def[I] ) ⋃ use[I]

where:
def[I] = set of variables defined (written) by I
use[I] = set of variables used (read) by I

• Meaning of transfer functions:
“Variables live before instruction I include: (1) variables live 
after I, but not written by I, and (2) variables used by I”
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LV: Transfer Functions
• Define def/use for each type of instruction

if I is x = y OP z :   use[I] = {y, z} def[I] = {x}
if I is x = OP y :  use[I] = {y} def[I] = {x}
if I is x = y :  use[I] = {y} def[I] = {x}
if I is x = addr y :   use[I] = {} def[I] = {x}
if I is if (x) :   use[I] = {x} def[I] = {}
if I is return x :    use[I] = {x} def[I] = {}
if I is x = f(y1,…, yn) :  use[I] = {y1,…, yn}   

def[I] = {x}

• Transfer functions FI(X) = ( X – def[I] ) ⋃ use[I]
• For each FI, def[I] and use[I] are constants: they don’t 

depend on input information X
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LV: Monotonicity
• Are transfer functions: FI(X) = ( X – def[I] ) ⋃ use[I] 

monotonic?

• Because def[I] is constant, X – def[I] is monotonic:
X1 ⊇ X2 implies X1 – def[I] ⊇ X2 – def[I]

• Because use[I] is constant, Y ⋃ use[I] is monotonic:
Y1 ⊇ Y2 implies Y1 ⋃ use[I] ⊇ Y2 ⋃ use[I]

• Put pieces together: FI(X) is monotonic
X1 ⊇ X2 implies 
(X1 – def[I]) ⋃ use[I] ⊇ (X2 – def[I]) ⋃ use[I]
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LV: Distributivity
• Are transfer functions: FI(X) = ( X – def[I] ) ⋃ use[I] 

distributive?

• Since def[I] is constant: X – def[I] is distributive:
(X1 ⋃ X2) – def[I]  =  (X1 – def[I]) ⋃ (X2 – def[I])
because: (a ⋃ b) – c = (a – c) ⋃ (b – c)

• Since use[I] is constant: Y ⋃ use[I] is distributive:
(Y1 ⋃ Y2) ⋃ use[I]  =  (Y1 ⋃ use[I])  ⋃(Y2 ⊓ use[I])
because: (a ⋃ b) ⋃ c = (a ⋃ c) ⋃ (b ⋃ c)

• Put pieces together: FI(X) is distributive
FI(X1 ⋃ X2) = FI(X1) ⋃ FI(X2)
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Live Variables: Summary
• Lattice: (2V, ⊇ ); has finite height
• Meet is set union, top is empty set
• Is a backward dataflow analysis

• Dataflow equations:
in[B] = FB(out[B]), for all B
out[B] = ⋃{in[B’] | B’∈succ(B)}, for all B 
out[Be]  = X0

• Transfer functions: FI(X) = ( X – def[I] ) ⋃ use[I]
- are monotonic and distributive

• Iterative solving of dataflow equation:
- terminates  
- computes MOP solution

CS 412/413   Spring 2007 Introduction to Compilers 12

Problem 2: Available Expressions
• Compute available expressions at each program point
• Available expression = expression evaluated in all program 

executions, and its value would be the same if re-evaluated
• Is similar to available copies for constant propagation

• Dataflow information: sets of available expressions
• Example: expressions {x+y, y-z} are available at point p
• Is a forward analysis

• Let E = set of all expressions in the program
• Lattice (L, ⊑ ), where:

– L = 2E (power set of E, i.e., set of all subsets of E)
– Partial order ⊑ is set inclusion: ⊇

S1 ⊑ S2 iff S1 ⊇ S2
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AE: The Lattice
• Consider set of expressions = {x*z, x+y, y-z}
• Denote e = x*z, f=x+y, g=y-z

• Partial order: ⊆
• Set E is finite implies 

lattice has finite height

• Meet operator: ∩
(set intersection)

• Top element: {e,f,g}
(set of all expressions)

• Larger sets of available expressions = more precise analysis
• No available expressions = least precise

{e} {f} {g}

{e,f} {e,g} {f,g}

{e,f,g}

∅
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AE: Dataflow Equations
• Equations:

out[B] = FB(in[B]), for all B
in[B] = ∩ {out[B’] | B’∈pred(B)}, for all B 
in[Bs]  = X0

• Meaning of intersection meet operator:
“An expression is available at entry of block B if it is 
available at exit of all predecessor nodes”
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AE: Transfer Functions

• Define transfer functions for instructions

• General form of transfer functions:
FI(X) = ( X – kill[I] ) ⋃ gen[I]

where:
kill[I] = expressions “killed” by I
gen[I] = new expressions “generated” by I

• Note: this kind of transfer function is typical for many 
dataflow analyses!

• Meaning of transfer functions: “Expressions available after 
instruction I include: (1) expressions available before I, but 
not killed by I, and (2) expressions generated by I”
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AE: Transfer Functions
• Define kill/gen for each type of instruction

if I is x = y OP z : gen[I] = {y OP z} kill[I] = {E | x∈E}
if I is x = OP y : gen[I] = {OP z} kill[I] = {E | x∈E}
if I is x = y :  gen[I] = {} kill[I] = {E | x∈E}
if I is x = addr y : gen[I] = {} kill[I] = {E | x∈E}
if I is if (x) : gen[I] = {} kill[I] = {}
if I is return x : gen[I] = {} kill[I] = {}
if I is x = f(y1,…, yn) :  gen[I] = {}   kill[I] = {E | x∈E}

• Transfer functions FI(X) = ( X – kill[I] ) ⋃ gen[I]

• … how about x = x OP y?
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Available Expressions: Summary
• Lattice: (2E, ⊆); has finite height
• Meet is set intersection, top element is E
• Is a forward dataflow analysis

• Dataflow equations:
out[B] = FB(in[B]), for all B
in[B] = ∩ {out[B’] | B’∈pred(B)}, for all B 
in[Bs]  = X0

• Transfer functions: FI(X) = ( X – kill[I] ) ⋃ gen[I]
- are monotonic and distributive

• Iterative solving of dataflow equation:
- terminates  
- computes MOP solution
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Problem 3: Reaching Definitions
• Compute reaching definitions for each program point
• Reaching definition = definition of a variable whose assigned 

value may be observed at current program point in some 
execution of the program

• Dataflow information: sets of reaching definitions
• Example: definitions {d2, d7} may reach program point p
• Is a forward analysis

• Let D = set of all definitions (assignments) in the program
• Lattice (D, ⊑ ), where:

– L = 2D (power set of D)
– Partial order ⊑ is set inclusion: ⊇

S1 ⊑ S2 iff S1 ⊇ S2
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RD: The Lattice
• Consider set of expressions = {d1, d2, d3}

where d1: x = y, d2: x=x+1, d3: z=y-x

• Partial order: ⊇
• Set D is finite implies 

lattice has finite height

• Meet operator: ⋃
(set union)

• Top element: ∅
(empty set)

• Smaller sets of reaching definitions = more precise analysis
• All definitions may reach current point = least precise

{d1,d2} {d1,d3} {d2,d3}

{d1} {d2} {d3}

∅

{d1,d2,d3}
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RD: Dataflow Equations
• Equations:

out[B] = FB(in[B]), for all B
in[B] = ⋃{out[B’] | B’∈pred(B)}, for all B 
in[Bs]  = X0

• Meaning of intersection meet operator:
“A definition reaches the entry of block B if it 
reaches the exit of at least one of its predecessor 
nodes”
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RD: Transfer Functions

• Define transfer functions for instructions

• General form of transfer functions:
FI(X) = ( X – kill[I] ) ⋃ gen[I]

where:
kill[I] = definitions “killed” by I
gen[I] = definitions “generated” by I

• Meaning of transfer functions: “Reaching definitions after 
instruction I include: (1) reaching definitions before I, but not 
killed by I, and (2) reaching definitions generated by I”
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RD: Transfer Functions
• Define kill/gen for each type of instruction
• If I is a definition d that defines x: 

gen[I] = {d} kill[I] = {d’ | d’ defines x}

• If I is not a definition:
gen[I] = {} kill[I] = {}

• Transfer functions FI(X) = ( X – kill[I] ) ⋃ gen[I]

• They are monotonic and distributive 
– For each FI, kill[I] and gen[I] are constants: they don’t depend 

on input information X
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Reaching Definitions: Summary
• Lattice: (2D, ⊇ ); has finite height
• Meet is set union, top element is ∅
• Is a forward dataflow analysis

• Dataflow equations:
out[B] = FB(in[B]), for all B
in[B] = ⋃{out[B’] | B’∈pred(B)}, for all B 
in[Bs]  = X0

• Transfer functions: FI(X) = ( X – kill[I] ) ⋃ gen[I]
- are monotonic and distributive

• Iterative solving of dataflow equation:
- terminates  
- computes MOP solution
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Implementation
• Lattices in these analyses = power sets
• Information in these analyses = subsets of a set
• How to implement subsets?

1. Set implementation 
- Data structure with as many elements as the subset has
- Usually list implementation

2. Bitvectors: 
- Use a bit for each element in the overall set
- Bit for element x is: 1 if x is in subset, 0 otherwise
- Example: S = {a,b,c}, use 3 bits
- Subset {a,c} is 101, subset {b} is 010, etc.
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Implementation Tradeoffs
• Advantages of bitvectors:

– Efficient implementation of set union/intersection:
set union is bitwise “or” of bitvectors
set intersection is bitwise “and” of bitvectors

– Drawback: inefficient for subsets with few elements

• Advantage of list implementation:
– Efficient for sparse representation
– Drawback: inefficient for set union or intersection

• In general, bitvectors work well if the size of the (original) 
set is linear in the program size
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Problem 4: Constant Folding
• Compute constant variables at each program point
• Constant variable = variable having a constant value on all 

program executions

• Dataflow information: sets of constant values
• Example: {x=2, y=3} at program point p
• Is a forward analysis

• Let V = set of all variables in the program, nvar = |V|
• Let N = set of integer numbers
• Use a lattice over the set V x N
• Construct the lattice starting from a lattice for N

• Problem: (N, ≤) is not a complete lattice!
… why?
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Constant Folding Lattice

• Second try: lattice (N ⋃ {⊤,⊥}, ≤)
– Where ⊥ ≤ n,  for all n∈N

– And     n ≤ ⊤, for all n∈N
– Is complete!

• Meaning:
– v= ⊤ : don’t know if v is constant

– v= ⊥ :  v is not constant

0

1

2

-1

-2

⊥

⊤

…

…
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Constant Folding Lattice

• Second try: lattice (N ⋃ {⊤,⊥}, ≤)
– Where ⊥ ≤ n,  for all n∈N

– And     n ≤ ⊤, for all n∈N
– Is complete!

• Problem:
– Is incorrect for constant folding
– Meet of two constants c≠d is min(c,d) 

– Meet of different constants should be ⊥

• Another problem: has infinite height …

0

1

2

-1

-2

⊥

⊤

…

…
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Constant Folding Lattice
• Solution: flat lattice L = (N ⋃ {⊤,⊥}, ⊑ )

– Where ⊥ ⊑ n,  for all n∈N

– And      n ⊑ ⊤ , for all n∈N
– And  distinct integer constants are not comparable

• Note: meet of any two distinct numbers is ⊥!

0-1-2

⊤

…21…

⊥
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Constant Folding Lattice

• Denote N*=N ⋃ {⊤, ⊥}

• Use flat lattice L=(N*, ⊑ )

• Constant folding lattice: L’=(V → N*, ⊑ C)
• Where partial order on V → N* is defined as:

X ⊑C Y  iff for each variable v: X(v) ⊑ Y(v)

• Can represent a function in V → N*  as a set of 
assignments: { {v1=c1}, {v2=c2}, …, {vn=cn} }
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CF: Transfer Functions

• Transfer function for instruction I:
FI(X) = ( X – kill[I] ) ⋃ gen[I]

where:
kill[I] = constants “killed” by I
gen[I] = constants “generated” by I

• X[v] = c ∈ N* if {v=c} ∈ X

• If I is v = c (constant):  gen[I] = {v=c} kill[I] = {v} x N*
• If I is v = u+w:  gen[I] = {v=e} kill[I] = {v} x N*

where e = X[u] + X[w],  if X[u] and X[w] are not ⊤, ⊥
e = ⊥, if X[u] = ⊥ or X[w] = ⊥
e = ⊤, if X[u] = ⊤ or X[w] = ⊤
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CF: Transfer Functions

• Transfer function for instruction I:
FI(X) = ( X – kill[I] ) ⋃ gen[I]

• Here gen[I] is not constant, it depends on X

• However transfer functions are monotonic (easy to prove)

• … but are transfer functions distributive?
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CF: Distributivity
• Example:

• At join point, apply meet operator
• Then use transfer function for z=x+y

x = 2
y = 3

x = 3
y = 2

z = x+y

{x=2, y=3, z=⊤}

{x=?, y=?, z=?}

{x=?, y=?, z=?}

{x=3, y=2, z=⊤}
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CF: Distributivity
• Example:

• Dataflow result (MFP) at the end: {x=⊥, y= ⊥, z=⊥}
• MOP solution at the end? {x=⊥,y=⊥,z=5} !

x = 2
y = 3

x = 3
y = 2

z = x+y

{x=3, y=2, z=⊤}{x=2, y=3, z=⊤}

{x=⊥, y=⊥, z=⊤}

{x=⊥, y=⊥, z=⊥}
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CF: Distributivity
• Example:

• Dataflow result (MFP) at the end: {x=⊥, y=⊥, z=⊥}
• MOP solution at the end: {x=⊥, y=⊥, z=5} !

x = 2
y = 3

x = 3
y = 2

z = x+y
{x=⊥, y=⊥, z=⊤}

{x=⊥, y=⊥, z=⊥}

{x=3, y=2, z=⊤}{x=2, y=3, z=⊤}
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CF: Distributivity
• Example:

• Reason for MOP ≠ MFP: 
transfer function F of z=x+y is not distributive!

F(X1 ⊓ X2) ≠ F(X1) ⊓ F(X2)
where X1 = {x=2, y=3, z=⊤} and X2 = {x=3, y=2, z=⊤}

x = 2
y = 3

x = 3
y = 2

z = x+y

{x=3, y=2, z=⊤}

{x=⊥, y=⊥, z=⊤}

{x=⊥, y=⊥, z=⊥}

{x=2, y=3, z=⊤}
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Classification of Analyses
• Forward analyses: information flows from

– CFG entry block to CFG exit block
– Input of each block to its output
– Output of each block to input of its successor blocks
– Examples: available expressions, reaching definitions, 

constant folding

• Backward analyses: information flows from
– CFG exit block to entry block
– Output of each block to its input
– Input of each block to output of its predecessor blocks
– Example: live variable analysis
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Another Classification
• “may” analyses: 

– information describes a property that MAY hold in SOME
executions of the program

– Usually: ⊓ = ∪, ⊤ =∅
– Hence, initialize info to empty sets
– Examples: live variable analysis, reaching definitions

• “must” analyses: 
– information describes a property that MUST hold in ALL

executions of the program
– Usually: ⊓ = ∩, ⊤ =S
– Hence, initialize info to the whole set
– Examples: available expressions 


