
1

CS 412/413 Spring 2007 Introduction to Compilers 1

CS412/CS413

Introduction to Compilers
Tim Teitelbaum

Lecture 27: More Dataflow Analysis
02 Apr 07

CS 412/413 Spring 2007 Introduction to Compilers 2

Lattices

• Lattice:
– Set augmented with a partial order relation ⊑
– Each subset has a LUB and a GLB
– Can define: meet ⊓, join ⊔, top ⊤, bottom ⊥

• Use lattice in the compiler to express information
about the program

• To compute information: build constraints that
describe how the lattice information changes
– Effect of instructions: transfer functions
– Effect of control flow: meet operation

CS 412/413 Spring 2007 Introduction to Compilers 3

Transfer Functions

• Let L = dataflow information lattice

• Transfer function FI : L → L for each instruction I
– Describes how I modifies the information in the lattice
– If in[I] is info before I and out[I] is info after I, then

Forward analysis: out[I] = FI(in[I])
Backward analysis: in[I] = FI(out[I])

• Transfer function FB : L → L for each basic block B
– Is composition of transfer functions of instructions in B
– If in[B] is info before B and out[B] is info after B, then

Forward analysis: out[B] = FB(in[B])
Backward analysis: in[B] = FB(out[B])

CS 412/413 Spring 2007 Introduction to Compilers 4

Monotonicity and Distributivity

• Two important properties of transfer functions

• Monotonicity: function F : L → L is monotonic if
x ⊑ y implies F(x) ⊑ F(y)

• Distributivity: function F : L → L is distributive if
F(x ⊓ y) = F(x) ⊓ F(y)

• Property: F is monotonic iff F(x ⊓ y) ⊑ F(x) ⊓ F(y)
- any distributive function is monotonic!

CS 412/413 Spring 2007 Introduction to Compilers 5

Proof of Property
• Prove that the following are equivalent:

1. x ⊑ y implies F(x) ⊑ F(y), for all x, y
2. F(x ⊓ y) ⊑ F(x) ⊓ F(y), for all x, y

• Proof for “1 implies 2”
– Need to prove that F(x ⊓ y) ⊑ F(x) and F(x ⊓ y) ⊑ F(y)

• because, if F(x ⊓ y) is a lower bound of both F(x) and F(y),
it is ⊑ the GLB of x and y, i.e, F(x) ⊓ F(y)

– Use x ⊓ y ⊑ x, x ⊓ y ⊑ y, and property 1

• Proof for “2 implies 1”
– Let x, y such that x ⊑ y
– Then x ⊓ y = x, so F(x ⊓ y) = F(x)
– Use property 2 to get F(x) ⊑ F(x) ⊓ F(y)
– Hence F(x) ⊑ F(y)

CS 412/413 Spring 2007 Introduction to Compilers 6

Control Flow
• Meet operation models how to combine information

at split/join points in the control flow
– If in[B] is info before B and out[B] is info after B, then:

Forward analysis: in[B] = ⊓ {out[B’] | B’∈pred(B)}
Backward analysis: out[B] = ⊓ {in[B’] | B’∈succ(B)}

• Can alternatively use join operation ⊔ (equivalent to
using the meet operation ⊓ in the reversed lattice)

2

CS 412/413 Spring 2007 Introduction to Compilers 7

Monotonicity of Meet
• Meet operation is monotonic over L x L, i.e.,

x1 ⊑ y1 and x2 ⊑ y2 implies (x1 ⊓ x2) ⊑ (y1 ⊓ y2)

• Proof:
– any lower bound of {x1,x2} is also a lower bound of

{y1,y2}, because x1 ⊑ y1 and x2 ⊑ y2

– x1 ⊓ x2 is a lower bound of {x1,x2}
– So x1 ⊓ x2 is a lower bound of {y1,y2}
– But y1 ⊓ y2 is the greatest lower bound of {y1,y2}
– Hence (x1 ⊓ x2) ⊑ (y1 ⊓ y2)

CS 412/413 Spring 2007 Introduction to Compilers 8

Forward Dataflow Analysis
• Control flow graph G with entry (start) node Bs

• Lattice (L, ⊑) represents information about program
– Meet operator ⊓ , top element ⊤

• Monotonic transfer functions
– Transfer function FI:L → L for each instruction I
– Can derive transfer functions FB for basic blocks

• Goal: compute the information at each program
point, given the information at entry of Bs is X0

• Require the
solution to
satisfy:

out[B] = FB(in[B]), for all B

in[B] = ⊓ {out[B’] | B’∈pred(B)}, for all B
in[Bs] = X0

CS 412/413 Spring 2007 Introduction to Compilers 9

Backward Dataflow Analysis
• Control flow graph G with exit node Be

• Lattice (L, ⊑) represents information about program
– Meet operator ⊓ , top element ⊤

• Monotonic transfer functions
– Transfer function FI:L → L for each instruction I
– Can derive transfer functions FB for basic blocks

• Goal: compute the information at each program
point, given the information at exit of Be is X0

• Require the
solution to
satisfy:

in[B] = FB(out[B]), for all B

out[B] = ⊓ {in[B’] | B’∈succ(B)}, for all B
out[Be] = X0

CS 412/413 Spring 2007 Introduction to Compilers 10

Dataflow Equations
• The constraints are called dataflow equations:

out[B] = FB(in[B]), for all B

in[B] = ⊓ {out[B’] | B’∈pred(B)}, for all B
in[Bs] = X0

• Solve equations: use an iterative algorithm
– Initialize in[Bs] = X0

– Initialize everything else to ⊤
– Repeatedly apply rules
– Stop when reach a fixed point

CS 412/413 Spring 2007 Introduction to Compilers 11

Algorithm

in[BS] = X0

out[B] = ⊤, for all B

Repeat
For each basic block B ≠ Bs

in[B] = ⊓ {out[B’] | B’∈pred(B)}
For each basic block B

out[B] = FB(in[B])

Until no change

CS 412/413 Spring 2007 Introduction to Compilers 12

Efficiency

• Algorithm is inefficient
– Effects of basic blocks re-evaluated even if the input

information has not changed

• Better: re-evaluate blocks only when necessary

• Use a worklist algorithm
– Keep of list of blocks to evaluate
– Initialize list to the set of all basic blocks
– If out[B] changes after evaluating out[B] = FB(in[B]),

then add all successors of B to the list

3

CS 412/413 Spring 2007 Introduction to Compilers 13

Worklist Algorithm
in[BS] = X0

out[B] = ⊤, for all B
worklist = set of all basic blocks B

Repeat
Remove a node B from the worklist
in[B] = ⊓ {out[B’] | B’∈pred(B)}
out[B] = FB(in[B])
if out[B] has changed, then

worklist = worklist ∪ succ(B)

Until worklist = ∅

CS 412/413 Spring 2007 Introduction to Compilers 14

Correctness
• Initial algorithm is correct

– If dataflow information does not change in the last
iteration, then it satisfies the equations

• Worklist algorithm is correct
– Maintains the invariant that

in[B] = ⊓ {out[B’] | B’∈pred(B)}

out[B] = FB(in[B])
for all the blocks B not in the worklist

– At the end, worklist is empty

CS 412/413 Spring 2007 Introduction to Compilers 15

Termination
• Do these algorithms terminate?

• Key observation: at each iteration, information
decreases in the lattice

ink+1[B] ⊑ ink[B] and outk+1[B] ⊑ outk[B]
where ink[B] is info before B at iteration k and outk[B] is
info after B at iteration k

• Proof by induction:
– Induction basis: true, because we start with top element,

which is greater than everything
– Induction step: use monotonicity of transfer functions and

meet operation

• Information forms a chain: in1[B] ⊒ in2[B] ⊒ in3[B] …

CS 412/413 Spring 2007 Introduction to Compilers 16

Chains in Lattices
• A chain in a lattice L is a totally ordered subset S of L:

x ⊑ y or y ⊑ x for any x, y ∈ S

• In other words:
Elements in a totally ordered subset S can be indexed to
form an ascending sequence:

x1 ⊑ x2 ⊑ x3 ⊑ …
or they can be indexed to form a descending sequence:

x1 ⊒ x2 ⊒ x3 ⊒ …

• Height of a lattice = size of its largest chain
• Lattice with finite height: only has finite chains

CS 412/413 Spring 2007 Introduction to Compilers 17

Termination
• In the iterative algorithm, for each block B:

{in1[B], in2[B], …}
is a chain in the lattice, because transfer functions and meet
operation are monotonic

• If lattice has finite height then these sets are finite, i.e.,
there is a number k such that ini[B] = ini+1[B], for all i ≥ k
and all B

• If ini[B] = ini+1[B] then also outi[B] = outi+1[B]
• Hence algorithm terminates in at most k iterations

• To summarize: dataflow analysis terminates if
1. Transfer functions are monotonic
2. Lattice has finite height

CS 412/413 Spring 2007 Introduction to Compilers 18

• The iterative algorithm computes a solution of the
system of dataflow equations

• … is the solution unique?
• No, dataflow equations may have multiple solutions !

• Example: live variables
Equations: I1 = I2-{y}

I3 = (I4-{x}) U {y}
I2 = I1 U I3
I4 = {x}

Solution 1: I1={}, I2={y}, I3={y}, I4={x}
Solution 2: I1={x}, I2={x,y}, I3={y}, I4={x}

Multiple Solutions

x = y

y = 1 I1
I2
I3
I4

4

CS 412/413 Spring 2007 Introduction to Compilers 19

Safety
• Solution for live variable analysis:

– Sets of live variables must include each variable whose
values will further be used in some execution

– … may also include variables never used in any execution!

• The analysis is safe if it takes into account all possible
executions of the program
– … may also characterize cases which never occur in any

execution of the program
– Say that the analysis is a conservative approximation of

all executions

• In example
– Solution 2 includes x in live set I1, which is not used later
– However, analysis is conservative

CS 412/413 Spring 2007 Introduction to Compilers 20

Safety and Precision
• Safety: dataflow equations guarantee a safe solution to the

analysis problem

• Precision: a solution to an analysis problem is more precise if
it is less conservative

• Live variables analysis problem:
– Solution is more precise if the sets of live variables are smaller
– Solution that reports that all variables are live at each point is

safe, but is the least precise solution

• In the lattice framework: S1 is less precise than S2 if the
result in S1 at each program point is less than the
corresponding result in S2 at the same point
– Use notation S1 ⊑ S2 if solution S1 is less precise than S2

CS 412/413 Spring 2007 Introduction to Compilers 21

Maximal Fixed Point Solution
• Property: among all the solutions to the system of dataflow

equations, the iterative solution is the most precise

• Intuition:
– We start with the top element at each program point (i.e.,

most precise information)
– Then refine the information at each iteration to satisfy the

dataflow equations
– Final result will be the closest to the top

• Iterative solution for dataflow equations is called Maximal
Fixed Point solution (MFP)

• For any solution FP of the dataflow equations: FP ⊑ MFP

CS 412/413 Spring 2007 Introduction to Compilers 22

Meet Over Paths Solution
• Is MFP the best solution to the analysis problem?

• Another approach: consider a lattice framework, but use
a different way to compute the solution
– Let G be the control flow graph with start block B0

– For each path pn=[B0, B1, …, Bn] from entry to block Bn:
in[pn] = FBn-1 (… (FB1(FB0(X0))))

– Compute solution as
in[Bn] = ⊓ { in[pn] | all paths pn from B0 to Bn}

• This solution is the Meet Over All Paths solution
(MOP)

CS 412/413 Spring 2007 Introduction to Compilers 23

MFP versus MOP
• Precision: can prove that MOP solution is always more

precise than MFP
MFP ⊑ MOP

• Why not use MOP?
• MOP is intractable in practice

1. Exponential number of paths: for a program
consisting of a sequence of N if statement, there will 2N

paths in the control flow graph
2. Infinite number of paths: for loops in the CFG

CS 412/413 Spring 2007 Introduction to Compilers 24

Importance of Distributivity

• Property: if transfer functions are distributive, then
the solution to the dataflow equations is identical to
the meet-over-paths solution

MFP = MOP

• For distributive transfer functions, can compute the
intractable MOP solution using the iterative fixed-
point algorithm

5

CS 412/413 Spring 2007 Introduction to Compilers 25

Better Than MOP?
• Is MOP the best solution to the analysis problem?

• MOP computes solution for all paths in the CFG
• There may be paths that will

never occur in any execution
• So MOP is conservative

• IDEAL = solution that takes
into account only paths that
occur in some execution

• This is the best solution
• … but it is undecidable

x = 1 x = 2

y = y+2

if (c)

if (c)

y = x+1

CS 412/413 Spring 2007 Introduction to Compilers 26

Summary
• Dataflow analysis

– sets up system of equations
– iteratively computes MFP
– Terminates because transfer functions are monotonic

and lattice has finite height

• Other possible solutions: FP, MOP, IDEAL
• All are safe solutions, but some are more precise:

FP ⊑ MFP ⊑ MOP ⊑ IDEAL
• MFP = MOP if distributive transfer functions

• MOP and IDEAL are intractable
• Compilers use dataflow analysis and MFP

