

Generalization

- Live variable analysis and detection of available copies are similar:
- Define some information that they need to compute
- Build constraints for the information
- Solve constraints iteratively:
- The information always "increases" during iteration
- Eventually, it reaches a fixed point.
- We would like a general framework
- Framework applicable to many other analyses
- Live variable/copy propagation = instances of the framework

CS 412/413 Spring 2007
Introduction to Compilers

Dataflow Analysis Framework

- Dataflow analysis = a common framework for many compiler analyses
- Computes some information at each program point
- The computed information characterizes all possible executions of the program
- Basic methodology:
- Describe information about the program using an algebraic structure called a lattice
- Build constraints that show how instructions and control flow influence the information in terms of values in the lattice
- Iteratively solve constraints

CS 412/413 Spring 2007
Introduction to Compilers
12

Partial Order Relations

- Lattice definition builds on the concept of a partial order relation
- A partial order ($\mathrm{P}, \underline{=}$) consists of:
- A set P
- A partial order relation \subseteq that is:

1. Reflexive	$x \sqsubseteq x$
2. Anti-symmetric	$x \sqsubseteq y, y \sqsubseteq x \Rightarrow x=y$
3. Transitive:	$x \sqsubseteq y, y \sqsubseteq z \Rightarrow x \sqsubseteq z$

- Called a "partial order" because not all elements are comparable, in contrast with a total order, in which
$\neg 4$. Total $\quad x \sqsubseteq y$ or $y \sqsubseteq x$
CS 412/413 Spring $2007 \quad$ Introduction to Compilers
13

Example

- P is $\{r e d$, blue, yellow, purple, orange, green $\}$
- ㄷ
red \subseteq purple, red \subseteq orange,
blue ᄃ purple, blue \subseteq green,
yellow \subseteq orange, blue \subseteq green,
red \subseteq red,
blue \subseteq blue,
yellow \subseteq yellow,
purple \subseteq purple,
orange ㄷ orange,
green \subseteq green
CS 412/413 Spring 2007
Introduction to Compilers
14

Hasse Diagrams

- A graphical representation of a partial order, where
- x and y are on the same level when they are incomparable
- x is below y when $x \sqsubseteq y$ and $x \neq y$
- x is below y and connected by a line when $x \sqsubseteq y, x \neq y$, and there is no z such that x z, $z \sqsubseteq y, x \neq z$, and $y \neq z$

Example, cont.

red is lower bound for \{purple, orange\}
blue is lower bound for \{purple, green\}
yellow is lower bound for \{orange, green\}
no lower bound for \{purple, orange, green\}
no lower bound for \{red, blue\}
no lower bound for \{red, yellow\}
no lower bound for \{blue, yellow\},
etc.

purple is upper bound for \{red, blue\} orange is upper bound for \{red, yellow\} green is upper bound for \{orange, green\} no upper bound for \{red, bule, yellow\} no upper bound for \{purple, orange\} no upper bound for \{orange, green\} no upper bound for \{purple, green\} etc.

Lower/Upper Bounds

- If (P, \subseteq) is a partial order and $S \subseteq P$, then:

1. $x \in P$ is a lower bound of S if $x \subseteq y$, for all $y \in S$
2. $x \in P$ is an upper bound of S if $y \subseteq x$, for all $y \in S$

- There may be multiple lower and upper bounds of the same set S

LUB and GLB

- Define least upper bound (LUB) and greatest lower bound (GLB) as follows:
- If (P, \subseteq) is a partial order and $S \subseteq P$, then: 1. $x \in P$ is GLB of S if:
a) x is a lower bound of S
b) $y \subseteq x$, for any lower bound y of S

2. $x \in P$ is a LUB of S if:
a) x is an upper bound of S
b) $x \subseteq y$, for any upper bound y of S

- ... are GLB and LUB unique?

Lattices

- A pair (L, 드) is a lattice if:

1. (L, C) is a partial order
2. Any finite subset $S \subseteq L$ has a LUB and a GLB

- Can define two operators in lattices:

1. Meet operator: $x \sqcap y=\operatorname{GLB}(\{x, y\})$
2. Join operator: $x \sqcup y=\operatorname{LUB}(\{x, y\})$

- Meet and join are well-defined for lattices

Example"

- P is natural numbers $\{0,1,2,3, \ldots\}$
- 드 is \leq

CS 412/413 Spring 2007

Complete Lattices

- A pair (L, C) is a complete lattice if:

1. (L, 드) is a partial order
2. Any subset $S \subseteq L$ has a LUB and a GLB

- Can define meet and join operators
- Can also define two special elements:

1. Bottom element: $\perp=G L B(L)$
2. Top element: $\quad \mathrm{T}=\mathrm{LUB}(\mathrm{L})$

- All finite lattices are complete

CS 412/413 Spring 2007
Introduction to Compilers 25

Power Set Lattice

- Partial order: \subseteq (set inclusion)
- Meet: \cap (set intersection)
- Join: u (set union)
- Top element: $\{a, b, c\}$ (whole set)
- Bottom element: \varnothing (empty set)

Example Lattice

- Consider $S=\{a, b, c\}$ and its power set $P=$ $\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{b, c\},\{a, c\}\{a, b, c\}\}$
- Define partial order as set inclusion: $X \subseteq Y$
- Reflexive $\quad X \subseteq X$
- Anti-symmetric $X \subseteq Y, Y \subseteq X \Rightarrow X=Y$
- Transitive $X \subseteq Y, Y \subseteq Z \Rightarrow X \subseteq Z$
- Also, for any two elements of P , there is a set that includes both and another set that is included in both
- Therefore (P, \subseteq) is a (complete) lattice
- Partial order: \supseteq (set inclusion)
- Meet: u (set union)
- Join: \cap (set intersection)
- Top element: \varnothing (empty set)
- Bottom element: $\{a, b, c\}$
 (whole set)

CS 412/413 Spring 2007

Relation To Dataflow Analysis

- Information computed by live variable analysis and available copies can be expressed as elements of lattices
- Live variables: if V is the set of all variables in the program and P the power set of V, then: - (P, \subseteq) is a lattice
- sets of live variables are elements of this lattice

Reversed Lattice

Relation To Analysis of Programs

- Copy Propagation:
- V is the set of all variables in the program
$-\mathrm{V} \times \mathrm{V}$ the Cartesian product representing all possible copy instructions
- P the power set of $V \times V$
- Then:
- (P, \subseteq) is a lattice
- sets of available copies are lattice elements

CS 412/413 Spring 2007
Introduction to Compilers
30

More About Lattices

- In a lattice (L, 드), the following are equivalent:

1. $x \subseteq y$
2. $x \sqcap y=x$
3. $x \sqcup y=y$

- Note: meet and join operations were defined using the partial order relation

CS 412/413 Spring 2007

Proof

- Prove that $x \subseteq y$ implies $x \sqcup y=y$:
- y is an upper bound of $\{x, y\}$
- All upper bounds of $\{x, y\}$ greater= than x, y
- In particular, they are greater= than y
- Prove that $x \sqcup y=y$ implies $x \sqsubseteq y$:
- y is a upper bound of $\{x, y\}$
$-y$ is greater $=$ than x and y
- In particular, y is greater= than x

CS 412/413 Spring 2007

Proof

- Prove that $x \subseteq y$ implies $x \sqcap y=x$:
- x is a lower bound of $\{x, y\}$
- All lower bounds of $\{x, y\}$ are less $=$ than x, y
- In particular, they are less= than x
- Prove that $\mathrm{x} \sqcap \mathrm{y}=\mathrm{x}$ implies $\mathrm{x} \subseteq \mathrm{y}$:
$-x$ is a lower bound of $\{x, y\}$
$-x$ is less $=$ than x and y
- In particular, x is less $=$ than y

CS 412/413 Spring 2007
Introduction to Compilers
32

Properties of Meet and Join

- The meet and join operators are:

1. Associative
$(x \sqcap y) \sqcap z=x п(y \sqcap z)$
2. Commutative
$x \sqcap y=y п x$
3. Idempotent:
$x \sqcap x=x$

- Property: If " $п$ " is an associative, commutative, and idempotent operator, then the relation " \subseteq " defined as $x \sqsubseteq y$ iff $x \sqcap y=x$ is a partial order
- Above property provides an alternative definition of a partial orders and lattices starting from the meet (join) operator
$\begin{array}{lll}\text { CS 412/413 } & \text { Spring } 2007 & \text { Introduction to Compilers }\end{array}$

Using Lattices

- Assume information we want to compute in a program is expressed using a lattice L
- To compute the information at each program point we need to:
- Determine how each instruction in the program changes the information
- Determine how information changes at join/split points in the control flow

Transfer Functions

- Dataflow analysis defines a transfer function
$F: L \rightarrow L$ for each instruction in the program
- Describes how the instruction modifies the information
- Consider in[I] is information before I, and out[I] is information after I
- Forward analysis: \quad out[I] $=F($ in [I $])$
- Backward analysis: in[I] = F(out[I])

CS 412/413 Spring 2007 Introduction to Compilers
36

Basic Blocks

- Can extend the concept of transfer function to basic blocks using function composition
- Consider:
- Basic block B consists of instructions (I_{1}, \ldots, I_{n}) with transfer functions $\mathrm{F}_{1}, \ldots, \mathrm{~F}_{\mathrm{n}}$
- in $[B]$ is information before B
- out $[B]$ is information after B
- Forward analysis:

$$
\text { out }[B]=F_{n}\left(\ldots\left(F_{1}(\operatorname{in}[B])\right)\right)=F_{n}{ }^{\circ} \ldots{ }^{\circ} F_{1}(\operatorname{in}[B])
$$

- Backward analysis:

$$
\operatorname{in}[1]=F_{1}\left(\ldots\left(F_{n}(\text { out }[i])\right)\right)=F_{1}{ }^{\circ} \ldots{ }^{\circ} F_{n}(\text { out }[B])
$$

CS 412/413 Spring 2007

Split/J oin Points

- Dataflow analysis uses meet/join operations at split/join points in the control flow
- Consider in $[B]$ is lattice information at beginning of block B and out $[B]$ is lattice information at end of B
- Forward analysis: in $[B]=\Pi\left\{o u t\left[B^{\prime}\right] \mid B^{\prime} \in \operatorname{pred}(B)\right\}$
- Backward analysis: out $[B]=\Pi\left\{\right.$ in[$\left.\left.B^{\prime}\right] \mid B^{\prime} \in \operatorname{succ}(B)\right\}$
- Can alternatively use join operation $ப$ (equivalent to using the meet operation $п$ in the reversed lattice)

CS 412/413 Spring 2007 Introduction to Compilers 38

