CS412/CS413

Introduction to Compilers

Tim Teitelbaum

Lecture 26: Dataflow Analysis Frameworks

30 March 07

CS 412/413 Spring 2007 Introduction to Compilers

Live Variable Analysis

What are the live
variables at each

program point?

Method:

1. Define sets of
live variables

1. Build constraints

2. Solve constraints

CS 412/413 Spring 2007 Introduction to Compilers

Derive Constraints

Derive Constraints

Constraints for each L
)) L
instruction: C
3
L
in[1]=(out[1]-def[1]) N
5
U usel[l] Ls
L7
Constraints for ts
control flow: Lg
10
_ P L
out[B] = ;lJ.cc(B)m[B] LE
CS 412/413 Spring 2007 Introduction to Compilers
Initialization
L=Lu{c} L=
L=Luly, ::2 f{)
L= (L) U) 5 ;g
L= (v 7 L=0
L= Lu {d} L5 -0
L=L, Ul LE;{}
L= (L bD v vz} L=g
L= L,
) Ly={}
L= Lio{z} L190 -0
b=y L, ={}
L= (Lp{zhu {3 L,=0
12

CS 412/413 Spring 2007

Introduction to Compilers

L=Lu{c} b
L=Luly, L
L= (LD U) 5
L= (Do @ N
Ls=Lgu {d} L5
=L, UL, N
L= (L0 v .2} U
Lg=Lo LB
Lo = Lyg{z} L;
Lo=1L, Ly
Ly = (Lp{zh v {3 Ly

CS 412/413 Spring 2007 Introduction to Compilers

Iteration 1

L=Lu{d L1=_{><,y‘z,c,d}
L=Lul, tz :?i;}d}
L= (LD v (v} N ;{Z*d'}
L= (v L: —fy2d}
L= Lyu {d} i
oo L=0.
L= (LD v {y.z} L=0
Ly= L, Ch
Lo= Lio-{z} Lju -0
to= L Ly ={¢
L= (LZh o £ L=0

CS 412/413 Spring 2007

Introduction to Compilers

Iteration 2

Fixed-point!

L,=Lu{c} Li={x.y.z,c,d}
L=Luly, L ={xy.z,c,d}
L= (L0 v {v} I|:3 i{y,z,c,g}
L= D a =z}
L= Lyu {d} Ls={x,y,z,c,d}
=)
L5 = Ls UL Le={x.y.z,c,d}
L= (o L =zcd}
= (LD udiy.z
L7 =L ’ g Lg={x,y.c.d}
8 9
Ly={x,y,c,d}
Lo= Ly
Lg = EO “ Lo ={xy.z,c.d}
L= oD 00 Lo =04
11 12 le ={}
CS 412/413 Spring 2007 Introduction to Compilers 8

L =Lu{c} L={xy.z,c,d}
L=Luly L, ={x,y,z,c,d}
Ly= (L) v {v} ta i{y,z,c,g}
L= (D s «=zody
L= L,u{d} Ls ={xy,z,c,d}
=Lv
LS = |_6 Ul Le={xy,z,c,d}
L= () 3 L =tzod
= (L v iyz
L=L ° g Lg={xy.c,d}
8 9
Lo ={x.y.c.d}
Lo=L, -
L9 - EU @ Lo ={x.y.z.c.d}
L= Grth o 09 b =03
11 12 le :{}
CS 412/413 Spring 2007 Introduction to Compilers 7
Final Result
L={xy.z,c.d}
L, ={xy.z,c,d}
L ={y.z.c.d}
x live here ! L, ={x,z,c,d}
Ls={xy.z,c,d}
Ls={x,y.z,c,d}
L ={y.z.c.d}
Final result: sets ::a i{x.y,cvg}
of live variables at Ls—{X’VvC’ }d
i ={xy.zc,
each program point 10 ={x.y,z,c,d}
L ={x}
L ={}
CS 412/413 Spring 2007 Introduction to Compilers 9

Characterize All Executions

L,={x,y.z,c,d}
L, ={x,y,z,c,d}
Ly={y.z.c.d}
L,={x,z,c,d}
Ly ={x,y.z,c,d}
Le={xy,z,c,d}
L, ={y.z,c,d}
Lg={x.y.c.d}
Ly={xy.c.d}
Lo ={x.y.z,c,d}
Ly ={x}

L ={}

The analysis detects
that there is an
execution that uses
the value x = y+1

CS 412/413 Spring 2007 Introduction to Compilers 10

Generalization

« Live variable analysis and detection of available
copies are similar:
— Define some information that they need to compute
— Build constraints for the information
— Solve constraints iteratively:

* The information always “increases” during iteration
= Eventually, it reaches a fixed point.

* We would like a general framework
— Framework applicable to many other analyses

— Live variable/copy propagation = instances of the
framework

CS 412/413 Spring 2007 Introduction to Compilers 11

Dataflow Analysis Framework

» Dataflow analysis = a common framework for

many compiler analyses
— Computes some information at each program point

— The computed information characterizes all possible
executions of the program

» Basic methodology:

— Describe information about the program using an
algebraic structure called a lattice

— Build constraints that show how instructions and
control flow influence the information in terms of
values in the lattice

— lIteratively solve constraints

CS 412/413 Spring 2007 Introduction to Compilers 12

Partial Order Relations

« Lattice definition builds on the concept of a
partial order relation

e A partial order (P,E) consists of:

— AsetP

— A partial order relation E that is:
1. Reflexive X E X
2. Anti-symmetric XEY,yEX = x=y
3. Transitive: XEy,yEz = XEz

* Called a “partial order” because not all elements are
comparable, in contrast with a fofa/ order, in which
—4. Total XEyoryEx

CS 412/413 Spring 2007 Introduction to Compilers 13

Example

e Pis {red, blue, yellow, purple, orange, green}
« C

red E purple, red E orange,
blue E purple, blue E green,
yellow E orange, blue E green,
red E red,

blue E blue,

yellow E yellow,
purple E purple,
orange E orange,
green E green

CS 412/413 Spring 2007 Introduction to Compilers 14

Hasse Diagrams

« A graphical representation
of a partial order, where

— x and y are on the same
level when they are

in_cor;ﬁ)arable . | purple orange green
— x is below y when xEy an

Xey | > > |

— X is below y and connected red blue yellow

by a line when xEy, x=y,
and there is no z such that
XEz, zEy, X#z, and y#z

CS 412/413 Spring 2007 Introduction to Compilers 15

Lower/Upper Bounds

e If (P, E) is a partial order and S <€ P, then:
1. xeP is a lower bound of S if x E y, for all yeS
2. xeP is an upper bound of S if y E X, for all yeS

e There may be multiple lower and upper bounds
of the same set S

CS 412/413 Spring 2007 Introduction to Compilers 16

Example, cont.

purple orange green

| > >

Example, cont.

purple orange green

red blue yellow
red is lower bound for {purple, orange} purple is upper bound for {red, blue}
blue is lower bound for {purple, green} orange is upper bound for {red, yellow}
yellow is lower bound for {orange, green} green is upper bound for {orange, green}

no lower bound for {purple, orange, green} no upper bound for {red, bule, yellow}
no lower bound for {red, blue} no upper bound for {purple, orange}
no lower bound for {red, yellow} no upper bound for {orange, green}
no lower bound for {blue, yellow}, no upper bound for {purple, green}
etc. etc.

red’ red blue yellow
red is lower bound for {purple, orange} purple is upper bound for {red, blue}
blue is lower bound for {purple, green} orange is upper bound for {red, yellow}
yellow is lower bound for {orange, green} green is upper bound for {orange, green}

no lower bound for {purple, orange, green} no upper bound for {red, bule, yellow}
no lower bound for {red, blue} no upper bound for {purple, orange}
no lower bound for {red, yellow} no upper bound for {orange, green}
no lower bound for {blue, yellow}, no upper bound for {purple, green}
etc. etc.

CS 412/413 Spring 2007 Introduction to Compilers 17

red’ is also a lower bound for {purple, orange}

CS 412/413 Spring 2007 Introduction to Compilers 18

LUB and GLB

» Define least upper bound (LUB) and greatest
lower bound (GLB) as follows:
« If (P, E) is a partial order and S € P, then:
1. xeP is GLB of S if:
a) x is a lower bound of S
b) y E x, for any lower bound y of S

2. xeP is a LUB of S if:
a) x is an upper bound of S
b) x E y, for any upper bound y of S
e ... are GLB and LUB unique?

CS 412/413 Spring 2007 Introduction to Compilers 19

Example, cont.

purple orange green

| > >

red blue yellow

red is GLB for {purple, orange}
blue is GLB for {purple, green}
yellow is GLB for {orange, green}

purple is LUB for {red, blue}
orange is LUB for {red, yellow}
green is LUB for {orange, green}

CS 412/413 Spring 2007 Introduction to Compilers

20

Example’

purple orange green

red’” red blue yellow

purple is LUB for {red, blue}
orange is LUB for {red, yellow}
green is LUB for {orange, green}

blue is GLB for {purple, green}
yellow is GLB for {orange, green}

purple is LUB for {red’, blue}
orange is LUB for {red’, yellow}

Example”

e P is natural numbers {0, 1, 2, 3, ... }
s Eis<

Every finite subset of P has a GLB and LUB
No infinite subset of P has a LUB

red’ is a lower bound for {purple, orange}
red is a lower bound for {purple, orange}
There is no GLB for {purple, orange}

CS 412/413 Spring 2007 Introduction to Compilers 21

o—F —N—Ww—:

CS 412/413 Spring 2007 Introduction to Compilers

22

Lattices

e Apair (L, E) is a lattice if:

1. (L, E) is a partial order

2. Any finite subset S € L has a LUB and a GLB
« Can define two operators in lattices:

1. Meet operator: x Ny = GLB({x,y})

2. Join operator: x Uy = LUB({x,y})

* Meet and join are well-defined for lattices

CS 412/413 Spring 2007 Introduction to Compilers 23

Example

black

purple orange green

| > >

red blue yellow
white
white is GLB for {red, blue, yellow} ‘ ‘ black is LUB for {purple, orange, green}

CS 412/413 Spring 2007 Introduction to Compilers

24

Complete Lattices

e A pair (L, E) is a complete lattice if:
1. (L, E) is a partial order
2. Any subset S € L has a LUB and a GLB

< Can define meet and join operators

« Can also define two special elements:
1. Bottom element: 1 = GLB(L)
2. Top element: T = LUB(L)

« All finite lattices are complete

CS 412/413 Spring 2007 Introduction to Compilers 25

Example Lattice

* Consider S = {a,b,c} and its power set P =

{9, {a}, {b}, {c}, {a,b}, {b,c}, {a,c} {a,b,c}}

» Define partial order as set inclusion: X € Y

— Reflexive XeX
— Anti-symmetric X<SY,YESX = X=Y
— Transitive XEY,YEZ = XeZ

» Also, for any two elements of P, there is a set
that includes both and another set that is
included in both

» Therefore (P, €) is a (complete) lattice

CS 412/413 Spring 2007 Introduction to Compilers 26

Power Set Lattice

e Partial order:
(set inclusion)
{a,b,c}

* Meet: n
(set intersection)

|
- Join:u {a,b} {ac} {b,c}
(set union) | >< >< |
- Top element: {a,b,c} {a} {b} {c}
(whole set) |

* Bottom element: &)
(empty set)

CS 412/413 Spring 2007 Introduction to Compilers 27

Reversed Lattice

e Partial order: 2
(set inclusion)

* Meet: U @
(set union) / | \

 Join: n {a} {b} {c}
(set intersection) | >< >< |

- Top element: @ {ab} {ac} {bc}
(empty set) |

- Bottom element: {a,b,c} {a.b,c}
(whole set)

CS 412/413 Spring 2007 Introduction to Compilers 28

Relation To Dataflow Analysis

» Information computed by live variable analysis
and available copies can be expressed as
elements of lattices

e Live variables: if V is the set of all variables in
the program and P the power set of V, then:

— (P, ©) is a lattice
— sets of live variables are elements of this
lattice

CS 412/413 Spring 2007 Introduction to Compilers 29

Relation To Analysis of Programs

e Copy Propagation:
- Vis the set of all variables in the program

-V x V the Cartesian product representing all
possible copy instructions

- P the power set of V x V

e Then:
— (P, ©) is a lattice
— sets of available copies are lattice elements

CS 412/413 Spring 2007 Introduction to Compilers 30

More About Lattices

« In a lattice (L, E), the following are equivalent:
1.XxEy
2.xny=x
3. Xxuy=y

< Note: meet and join operations were defined
using the partial order relation

CS 412/413 Spring 2007 Introduction to Compilers 31

Proof

e Prove that x Ey implies x 1y = x:
—x is a lower bound of {x,y}
— All lower bounds of {x,y} are less= than x,y
— In particular, they are less= than x

e Prove that x My = x impliesXE y :
— X is a lower bound of {x,y}
—Xxis less= than x and y
— In particular, x is less= than y

CS 412/413 Spring 2007 Introduction to Compilers 32

Proof

e Prove that x Ey impliesxuy =y:
—Yy is an upper bound of {x,y}
— All upper bounds of {x,y} greater= than x,y
— In particular, they are greater= thany

e Prove thatx Uy =y impliessxE vy :
—y is a upper bound of {x,y}
—V is greater=than x and y
— In particular, y is greater= than x

CS 412/413 Spring 2007 Introduction to Compilers 33

Properties of Meet and Join

e The meet and join operators are:

1. Associative (xny)ynz=xn(ynz)
2. Commutative XNy =ynx
3. Idempotent: XM X=X

= Property: If “N” is an associative, commutative, and
idempotent operator, then the relation “E” defined as
XEy iff x 1y = x is a partial order

« Above property provides an alternative definition of a
partial orders and lattices starting from the meet (join)
operator

CS 412/413 Spring 2007 Introduction to Compilers 34

Using Lattices

= Assume information we want to compute in a
program is expressed using a lattice L

e To compute the information at each program
point we need to:

— Determine how each instruction in the program
changes the information

— Determine how information changes at join/split
points in the control flow

CS 412/413 Spring 2007 Introduction to Compilers 35

Transfer Functions

« Dataflow analysis defines a transfer function
F : L — L for each instruction in the program

* Describes how the instruction modifies the
information

e Consider in[l] is information before I, and out[I] is
information after |

* Forward analysis: out[l] = F(in[I])
e Backward analysis: in[I] = F(out[l])

CS 412/413 Spring 2007 Introduction to Compilers 36

Basic Blocks

Can extend the concept of transfer function
to basic blocks using function composition

Consider:

— Basic block B consists of instructions (I, ..., 1,) with
transfer functions Fy, ..., F,

— in[B] is information before B
— out[B] is information after B

Forward analysis:

out[B] = F(...(F,(in[B]))) = F,, °... ° F,(in[B])
Backward analysis:

in[I] = F, (.. (Fy(out[il))) =F,°... ° F(out[B])

CS 412/413 Spring 2007 Introduction to Compilers

37

Split/Join Points

« Dataflow analysis uses meet/join operations at split/join

points in the control flow

« Consider in[B] is lattice information at beginning of
block B and out[B] is lattice information at end of B

e Forward analysis: in[B] = N {out[B'] | B'epred(B)}
e Backward analysis: out[B] = M {in[B’] | B’esucc(B)}

e Can alternatively use join operation U (equivalent to
using the meet operation n in the reversed lattice)

CS 412/413 Spring 2007 Introduction to Compilers

38

