CS412/CS413

Introduction to Compilers
Tim Teitelbaum

Lecture 25: Liveness and Copy Propagation
28 March 05

CS 412/413 Spring 2007 Introduction to Compilers 1

Control Flow Graphs

e Control Flow Graph (CFG) = graph representation
of computation and control flow in the program
— framework to statically analyze program control-flow

* In a CFG:
— Nodes are basic blocks; they represent computation
— Edges characterize control flow between basic blocks

e Can build the CFG representation either from the
high IR or from the low IR

CS 412/413 Spring 2007 Introduction to Compilers 2

Build CFG from High IR

while (c) {
X=y+ 1;
y=2%*z
if (d) x =y+z;
z=1;
Z=X;
CS 412/413 Spring 2007 Introduction to Compilers 3

Build CFG from Low IR

label L1
label L1 fjump cL2
fjlump c L2 i
X=y+1; X=y+1;
y=2%*z, y=2%z
fjump d L3 fiumpld L3
X =yrz |:> X = y+z;
label L3
z=1; label L3
jump L1 z=1;
label L2 jump L1
Z=X; label L2

zZ=X;

CS 412/413 Spring 2007 Introduction to Compilers 4

Using CFGs

e Next: use CFG representation to statically
extract information about the program
— Reason at compile-time

— About the run-time values of variables and
expressions in all program executions

e Extracted information example: live variables

* ldea:
— Define program points in the CFG

— Reason statically about how the information flows
between these program points

CS 412/413 Spring 2007 Introduction to Compilers 5

Program Points

e Two program points for each instruction:
— There is a program point before each instruction
— There is a program point after each instruction

Point before ———— o
X = y+1
Point after ———— @

e In a basic block:

— Program point after an instruction = program point
before the successor instruction

CS 412/413 Spring 2007 Introduction to Compilers 6

Program Points: Example

* Multiple successor blocks .
means that point at the X =y+1
end of a block has multiple .
successor program points y =2*z

L]

= Depending on the if (d)

execution, control flows .

from a program point to

Flow of Extracted Information

e Question 1: how does information X = y+1

flow between the program points .
before and after an instruction? y =2*z

L]
e Question 2: how does information if (d)
flow between successor and ‘
predecessor basic blocks?

[]
X =y+z
L]

e ... in other words:

Q1: what is the effect of instructions?
Q2: what is the effect of control flow? z

o |l e
-

CS 412/413 Spring 2007 Introduction to Compilers 8

one of its successors o
. X=y+z

* Also multiple predecessors .

* How does information .
propagate between 7=1
program points? .

CS 412/413 Spring 2007 Introduction to Compilers 7
Using CFGs

= To extract information: reason about how it
propagates between program points

e Rest of this lecture: how to use CFGs to

compute information at each program point for:

— Live variable analysis, which computes which
variables are live at each program point

— Copy propagation analysis, which computes the
variable copies available at each program point

CS 412/413 Spring 2007 Introduction to Compilers 9

Live Variable Analysis

« Computes live variables at each program point

— l.e., variables holding values that may be used later (in
some execution of the program)

« For an instruction I, consider:
— in[I] = live variables at program point before |
— out[I] = live variables at program point after |

e For a basic block B, consider:
— in[B] = live variables at beginning of B
— out[B] = live variables at end of B

If | = first instruction in B, then in[B] = in[l]
« If I' = last instruction in B, then out[B] = out[I']

CS 412/413 Spring 2007 Introduction to Compilers 10

How to Compute Liveness?

« Answer question 1: for each in[1]
instruction I, what is the relation |
between in[I] and out[1] ? out[l]

e Answer question 2: for each
basic block B with successor
blocks B, ..., B, what is the
relation between out[B] and
in[B,], ..., in[B.]?

CS 412/413 Spring 2007 Introduction to Compilers 11

Part 1: Analyze Instructions

* Question: what is the relation between in[1]

sets of live variables before and after 1
an instruction? out[l]
e Examples:

conclude in[1] = {y,z} in[1] ={y.z,t} in[1] = {x,t}
X =y+z; X =Yy+z; X = X+1;
assume out[l] = {z} out[1] = {x,t} out[I] = {x,t}
e ... is there a general rule?

CS 412/413 Spring 2007 Introduction to Compilers 12

Analyze Instructions

e Yes: knowing variables live after I,

can compute variables live before I: in[1]
— All variables live after | are also live I
before 1, unless | defines (writes) them out[l]

— All variables that | uses (reads) are also
live before instruction |
* Mathematically:
in[1] = (out[I] — def[1]) v use[l]
where:

— def[I] = variables defined (written) by instruction |
— use[I] = variables used (read) by instruction |

Computing Use/Def

e Compute use[l] and def[I] for each instruction I:

iflisx=yOPz: use[ll]={y,z} def[l] ={x}
iflisx=0Py : use[l] ={y} def[1] = {x}

iflisx=y o use[l] = {y} def[I] = {x}
if lisx=addry: use[l] ={} def[1] = {x}
if 1is if (x) o ouse[l] = {x} def[l] = {3

if lisreturnx : use[l] = {x} def[ll = {3
if Lis X =y, yo) = use[l] =y, .., Yo}t
def[I] = {x}

(For now, ignore load and store instructions)

CS 412/413 Spring 2007 Introduction to Compilers 14

CS 412/413 Spring 2007 Introduction to Compilers 13
Example
e Example: block B with three
instructions 11, 12, 13: Block B
Livel =in[B] =in[I1] Livel
Live2 = out[I1] = in[12] 11| x=y+1
Live3 = out[12] = in[I3] Live2
Live4 = out[13] = out[B] 12| y=2*
= Relation between Live sets: Live3
Livel = (Live2-{x}) u {y} 13 if (d)
Live2 = (Live3-{y}) v {z} Lived
Live3 = (Live4-{}) v {d}
CS 412/413 Spring 2007 Introduction to Compilers 15

Backward Flow

e Relation: in[1]
|

in[1] = (out[I] — def[1]) v use[l] ﬁ
out[l]
e The information flows backward!

e Instructions: can compute in[1] if we

know out[I] In[B]
X =y+1
» Basic blocks: information about live y =2*z
variables flows from out[B] to in[B] if (d)
out[B]
CS 412/413 Spring 2007 Introduction to Compilers 16

Part 2: Analyze Control Flow

e Question: for each basic block B
with successor blocks B, ..., B,
what is the relation between
out[B] and in[B,], ..., in[B,]?

e Examples:
{x,5,2< {x?,z}
%3] {x,y}‘ ‘) ‘ ‘ %) ‘ ‘ {2 ‘
B, B B, B B,

* What is the general rule?

CS 412/413 Spring 2007 Introduction to Compilers 17

Analyze Control Flow

e Rule: A variables is live at end of block B if it is
live at the beginning of one (or more) successor
blocks

e Characterizes all possible program executions

* Mathematically:
out[B] = uin[B]

B' < succ(B)

Again, information flows backward: from
successors B’ of B to basic block B

CS 412/413 Spring 2007 Introduction to Compilers 18

Constraint System

e Put parts together: start with CFG and derive a
system of constraints between live variable sets:

out[B] = v in[B] for each basic block B
B' e succ(B)

{ in[1] = (out[I] — def[I]) W use[I] for each instruction I

« Solve constraints:
— Start with empty sets of live variables
— lteratively apply constraints
— Stop when we reach a fixed point

CS 412/413 Spring 2007 Introduction to Compilers 19

Constraint Solving Algorithm

for all instructions | do in[I] = out[l] = &;
repeat
select an instuction | (or a basic block B) such that
in[1] = (out[1] — def[1]) U use[l]
or (respectively)
out[B] # U in[B7]
B’ e succ(B)
and update in[I] (or out[B]) accordingly
until no such change is possible

CS 412/413 Spring 2007 Introduction to Compilers 20

Example

def = {}, use = {c}

def = {x}, use = {y}
def = {y}, use = {z}
def = {}, use = {d}

def = {x}, use=4{y,

def = {z}, use={}

def = {z}, use = {x}-—------m- -

Example

def = {}, use = {c}

def = {x}, use = {y}
def = {y}, use = {z}
def = {}, use = {d}

def = {x}, use ={y,

def = {z}, use={}

{}s
def = {z}, use={x}-—-——-—- - Z=X
T {}
strategy: pick program points in postorder
CS 412/413 Spring 2007 Introduction to Compilers 22

CS 412/413 Spring 2007 Introduction to Compilers 21
Example
def ={}, use ={c} ———F—-
def = {x}, use = {y} -
def = {y}, use = {z} -
def={}, use={d}
def = {x}, use={y,z}
def ={z}, use={} X~
o
def = {z}, use = {x} - -] z=x s
{}
!
CS 412/413 Spring 2007 Introduction to Compilers 23

Example

def = {}, use ={c}

def = {x}, use = {y}—
def = {y}, use ={z}
def = {}, use ={d}

def = {x}, use={y,z} —

def = {z}, use={}

def = {z}, use={x}-——--- -

CS 412/413 Spring 2007 Introduction to Compilers 24

def = {}, use ={c}

def={x}, use={y} X =y+1 e
def = {y}, use ={z} - y =2*z
def={}, use={d} -~ if (d) {1
def = {x}, use ={y,z} {y{z
def ={z}, use={} ——-\- ¢ }2
def = {z}, use = {x} -~ N FETE

{3

l
CS 412/413 Spring 2007 Introduction to Compilers 26
Example

{}o

def = {3, =
ef = {}, use = {c} ﬁ}s)

def = {x}, use = {y} Vs
def = {y}, use = {z}
def = {}, use = {d} o .k
def = {x}, use = {y,z} - {
def={z}, use={} —— O

3
def = {z}, use = {x} ———— “le=x .y

I {}
CS 412/413 Spring 2007 Introduction to Compilers 28

def = {}, use = {c} -+,
def={x}, use={y} —1—
def = {y}, use = {z} -
def ={}, use={d} -
def = {x}, use={y,z} i
def ={z}, use={} -\~
def = {z}, use = {x}-------—-------- - z=x iig
l 7
CS 412/413 Spring 2007 Introduction to Compilers 25
Example
{}o
def = {}, =fC} e fee
ef = {}, use = {c} 0
def = {x}, use = {y} -4+ Yo
def = {y}, use ={z} -+
def = {}, use = {d} {y ----- o
def = {x}, use={y,z} - { :
def={z}, use={} -\~ {r
i
def = {z}, use={x} - - z=x 8
T {}
CS 412/413 Spring 2007 Introduction to Compilers 27
Example
l {}
def = {3, use = {c} ——---------Ffr 10
13 q
def={x}, use={y} - Y:Z.d}s
def = {y}, use = {z} -
M= 0. wses o,
def = {x}, use = {y,z} - {
def ={z}, use={} X~ {r
h
def = {z}, use = {x}-------—------- - z=x s
T {h
CS 412/413 Spring 2007 Introduction to Compilers 29

Example

def = {3}, use = {c}

def = {x}, use ={y}
def = {y}, use = {z}

def = {}, use ={d}
{y.2

def = {x}, use ={y,z} - {

def ={z}, use={} -

def = {z}, use={x}-——— -] z=x

CS 412/413 Spring 2007 Introduction to Compilers

30

def = {}, use ={c} /- {rx,y,é,d}g
def = {x}, use={y} 4+ V2. ks
def = {y}, use ={z} ———
def = {}, use = {d} {y fffff ke
def = {x}, use = {y.z} —— {
def ={z}, use={} -\~ {}?
def = {z}, use = {x}---------------- - z=x O
T {¥
CS 412/413 Spring 2007 Introduction to Compilers 31
Example
- v {x.y.z,d.c}yo
def = {}, use = {c} oy,
def ={x}, use={y} - G
def = {y}, use ={z} -+
def={}, use={d} v
_ _ {v.3}, e
def = {x}, use={y,z} —— {
ir
f = ={}
def = {z}, use={} AT
def = {z}, use = {x} - -l z=x s
T {¥
CS 412/413 Spring 2007 Introduction to Compilers 33
Example
l {x,y,z,d,c}
def ={}, use={c} 4~ i AR
{rx,yyé,d}g
def = {x}, use = {y}-—----f-r ¥.z.d}s
def = {y}, use ={z} -
def = {}, use ={d} *""*"{*y" fffff v
def = {x}, use={y,zz} -
{xy.d,c
def ={z}, use={} X~ Dgy.dick,
x,y,z,d,c};
def = {z}, use = {x}------—----—----- - z=x O
T ¥
CS 412/413 Spring 2007 Introduction to Compilers 35

_ _ {xy,2,d,cho
def = {}, use = {c} ix‘ﬁ’éf}g
def ={x}, use={y} — x = y+1 4
def = {y}, use ={z} - y =2*z
def={}, use={d} -~ it |, b

{2 Wiss
def = {x}, use ={y,z} —- {
def ={z}, use={} ——-\- ¢ }2
def = {z}, use = {x} -~ TG
I {3
CS 412/413 Spring 2007 Introduction to Compilers 32
Example

_ _ {x,y,2,d,c}yo
def = {}, use = {c} ﬁx,y,z,d}g
def = {x}, use = {y} V2:dks
def = {y}, use = {z}
def = {}, use = {d} £

. {v.3}s
def = {x}, use={y,z} - {
def = {z}, use ={} X\~ Gpyack
X,y,2,d,C},
def = {2}, use = {x}-————-- a=x %
I {}
CS 412/413 Spring 2007 Introduction to Compilers 34
Example
def = {3, use = {c} Goy.z.dicho
§X,y,é,d}g
def = {x}, use = {y} V.2 dks
def = {y}, use ={z}
def = {}, use ={d} 1
{v.2.d, {v.2}s
def = {x}, use={y,z} -
{xy.d,c
def = {z}, use = {} —-------\-—- Gpydck
x,y,z,d,c};
def = {z}, use = {x}-—--—---- - Lz=x 0%
T {3
CS 412/413 Spring 2007 Introduction to Compilers 36

{x,y.z,d,c}h

{x.y.z,d.c}yo
def = {3}, use = {c}),
def = {x}, use ={y} - f— =yl Y:2:0:Cks
def = {y}, use ={z} - | y=2%z
def= {3, use={d} -~ if (d) o) 20k

def = {x}, use={y,z} {y.z.d.

def = {3, use = {c} /- {rxyy’é’d}g
def={x}, use={y} - ¥:z.d}e
def = {y}, use ={z} —————
def = {}, use = {d} {yZd fffff fez.dche
def = {x}, use ={y,z} ——--
{xy,d,c
def = {z}, use = {} -\~ {yy.d.ck,
x,y,z,d,c}
def = {z}, use ={x}-——------- -l z=x e
I {}
CS 412/413 Spring 2007 Introduction to Compilers 37
Example
= — el e S {x.y,z,d,c}o
def = {}, use = {c} 2.,
def = {x}, use = {y} -4+ ¥:z.d.cle
def = {y}, use = {z} |
def = {}, use = {d} '":{'y“z'-d" ----- xz.dicte
def = {x}, use ={y,z} -
{x,y.d,c
def ={z}, use={} N\~ Bgy.dict,
x,y,z,d,C},
def ={z}, use={}-—— - z=x EX}}E
l 7
CS 412/413 Spring 2007 Introduction to Compilers 39
Example
l {x,y,z,d,c}
def ={}, use ={c} /-~ i AR EY
<g>(,y,z,d,c}9
def = {x}, use = {y}-—----f-r Y:2.d.}e
def = {y}, use ={z} -
=0, e ”{yizidi 77777 {x.},2,d,c}s
def = {x}, use ={y,z} —--
{x,y.d.c
def ={z}, use={} -\~ {yy.d.c},
x,y,z,d,c};
def = {z}, use = {x}-—-—------—--- - z=x e
T {}
CS 412/413 Spring 2007 Introduction to Compilers 41

{xy.d.c
def = {z}, use = {} N\ Gpydck
x,y,z,d,c},
X
def = {z}, use = {x} - NIFETE s,
I {3
CS 412/413 Spring 2007 Introduction to Compilers 38
Example
{x,y,2,d,c}yo
def = {}, use = {c
o {c} e,
z
def = {x}, use = {y} ‘Gl
def = {y}, use = {z}
def = {}, use = {d} ad x3.2.d.c}
def = {x}, use ={y,z} — -
{xy.d.c
def={z}, use={} ——\ - Gpy.dck
X,y,2,d,C},
{x}
def = {z}, use={x}-—-——-—- -LZz=X °
I {}
CS 412/413 Spring 2007 Introduction to Compilers 40
Example
_ _ {xy.z,d,cho
def = {3}, use = {c} ix'?é‘c’f}g
def = {x}, use = {y} 20
def = {y}, use ={z}
def={} use={d} {y.2.d {x.y.z,d,c}s
def = {x}, use={y,z} -
{xy.d,c
def = {z}, use = {} —-------\-—- Gpydck
x,y,z,d,c};
X
def = {z}, use = {x}-------— - Z=X 0%
T {3
CS 412/413 Spring 2007 Introduction to Compilers 42

Fixed Point Reached

\y.2,d,C}o
def={}, use ={c} —— /" gii ‘ 3
|t]
def = {x}, use = {y}-————-——f— ¥.z,d.cts
def = {y}, use ={z}
def={}, use={d} —F—

{y.z,d,d {x.y,2,d,c}s
def = {x}, use={y,z} -
{xy.dc

def ={z}, use={} "

{yy.d.ck,

x,y,z,d,c}
{x}s
def = {z}, use = {x}-——-- - z=x
T {}
CS 412/413 Spring 2007 Introduction to Compilers 43

Copy Propagation
« Goal: determine copies available at each program point
< Information: set of copies <x=y> at each point

« For each instruction I:
— in[I] = copies available at program point before |
— out[I] = copies available at program point after |

e For each basic block B:
— in[B] = copies available at beginning of B
— out[B] = copies available at end of B

« If | = first instruction in B, then in[B] = in[I]
« If I' = last instruction in B, then out[B] = out[I']

CS 412/413 Spring 2007 Introduction to Compilers 44

Same Methodology
1. Express flow of information (i.e., available copies):
— For points before and after each instruction (in[l], out[1])

— For points at exit and entry of basic blocks (in[B], out[B])

2. Build constraint system using the relations between
available copies

3. Solve constraints to determine available copies at
each point in the program

CS 412/413 Spring 2007 Introduction to Compilers 45

Analyze Instructions

e Knowing in[I], can compute out[I]:

— Remove from in[I] all copies <u=v> if in1]
variable u or v is written by | 1
— Keep all other copies from in[l] out[l]

— If I is of the form x=y, add it to out[l]
e Mathematically:
out[I] = (in[I] = Kkill[1]) vgen[I]
where:

— Kill[I] = copies “killed” by instruction |
— gen[I] = copies “generated” by instruction |

CS 412/413 Spring 2007 Introduction to Compilers 46

Computing Kill/Gen

« Compute kill[1] and gen[I] for each instruction I:

iflisx=yOPz: gen[l]={} kill[1] = {u=v|u or v is x}
iflisx=0Py : gen[l]={} kill[1] = {u=v]u or v is x}

iflisx=y o gen[l] = {x=y} kill[1] = {u=v|u or v is x}
if lisx=addry: gen[l] ={} kill[1] = {u=v]u or v is x}
if Lisif (x) cogen[l] ={} kill[1] = {3

if lisreturnx : gen[l] ={} kill(n = {3
if Lisx =f(y,,..., y.) : gen[l] = {3 kill[l]] = {u=v]uorvisx}

(again, ignore load and store instructions)

CS 412/413 Spring 2007 Introduction to Compilers 47

Forward Flow

= Relation: in[]

out[I] = (in[I] = kill[1]) v gen[1] 1 ﬂ
out[l]
e The information flows forward!

e Instructions: can compute out[l] if

we know in[l] In[B]
X=y
= Basic blocks: information about y =2*z
available copies flows from in[B] to if (d)
out[B] out[B]
CS 412/413 Spring 2007 Introduction to Compilers 48

Analyze Control Flow

e Rule: A copy is available at beginning of block B if
it is available at the end of all predecessor blocks

e Characterizes all possible program executions

* Mathematically:
in[B]= ~» out[B]

B’ € pred(B)

« Information flows forward: from predecessors B’
of B to basic block B

Constraint System

« Build constraints: start with CFG and derive a system of
constraints between sets of available copies:

out[I] = (in[1] = kill[1]) W gen[l] for each instruction |
in[B] = md(;)ut[B'] for each basic block B

B' e pred(B]

* Solve constraints:

— Start with empty set of available copies at start and
universal set of available copies everywhere else

— lteratively apply constraints

— Stop when we reach a fixed point

CS 412/413 Spring 2007 Introduction to Compilers 50

Example

_ L=
X=Y e L, ={al}
e What are the available =~ '——F———F 7 Ly ={all}
copies at the end of - - L, ={all}
the program? /L7 1 Lo ={all}
—— Ly ={all}
X=y? L ={all}
it [-1y ={all}
z=t? -—t- Ly={all}
””””” "Ly ={all}
S B - Ly, ={all}
L, ={all}
. L, ={all}
/ Ly, ={all}

CS 412/413 Spring 2007 Introduction to Compilers 52

CS 412/413 Spring 2007 Introduction to Compilers 49
Example
Ll
X—)t/ ,,,,,,, Lz
. 7=
e What are the available =~ ——F—+"" Ls
copies at the end of — Ly
the program? /L 2% | L
L
X=1z
xX=y? y=2%7 | ”4-7
if (d) s
z=t? o
[=1] b
5 T - L11
X=2Z" L
u=z+1 |/ 2
7= t L13
7 L14
CS 412/413 Spring 2007 Introduction to Compilers 51
Iteration 1
— L=
oA L=y}

« What are the available =~ “——F—F"" Ly={x=y, 2=t}
copies at the end of 2=t}
the program? =y, 2=t}

, 2=t}
X=z N ={x=77=
x=y? y =2%7 1, ={x=z,z=t}
if (d) L ={x=z, z=t}
7=t? Ly ={x=z, z=t}
| t=1 | R Ly ={x=z, 2=t}
—n - Ly ={x=z}
X=27? L ={x=7}
””” Lig={x=2}
7 L ={z=t}
CS 412/413 Spring 2007 Introduction to Compilers 53

Iteration 2

L=

- What are the available =~ '————F Ly ={x=y, 2=t}
copies at the end of — 1 L ={z=t}
the program?

x=y? -1, ={z=t, x=2}

YL ={z=t, x=2}
Ly ={z=t, x=2}
"Ly ={z=t, x=2}
""" - Ly ={x=z}
L, ={x=2}
Liz={x=2}
VAT

CS 412/413 Spring 2007 Introduction to Compilers 54

Fixed Point Reached!

* What are the available

Summary

» Extracting information about live variables and
available copies is similar

copies at the end of
the program?

x=y? NO

z=t? YES

-, ={z=t, x=z}
Vg ={z=t, x=2}

Lo ={z=t, x=2}

— Define the required information

— Define information before/after instructions
— Define information at entry/exit of blocks

— Build constraints for instructions/control flow
— Solve constraints to get needed information

x=z? NO

CS 412/413 Spring 2007

””””” "Ly ={z=t, x=2}
””””” - Ly ={x=2}

Introduction to Compilers

/T L, ={z=t}

u=z+1 Ly, ={x=2}
2=t | / Lis={x=2}

55

e ..is there a general framework?
— Yes: dataflow analysis!

CS 412/413 Spring 2007

Introduction to Compilers

56

10

