
1

CS 412/413 Spring 2007 Introduction to Compilers 1

CS412/CS413

Introduction to Compilers
Tim Teitelbaum

Lecture 17: Partitioned Attribute Grammars
2 Mar 07

CS 412/413 Spring 2007 Introduction to Compilers 2

Static Attribute Evaluation
• Analyze the grammar and determine a fixed

tree traversal scheme (with interleaved
evaluations) such that for any possible
derivation tree T, evaluations will be in
topological order

• Partitioned attribute grammars are a large class
that lends itself to efficient analysis and
evaluation

CS 412/413 Spring 2007 Introduction to Compilers 3

Plans
• Each production X0 → X1…Xn will have one

associated plan
• A plan is a linear sequence of instructions,

where an instruction is one of
– EVAL Xi.a evaluate attribute a of symbol Xi

– VISIT(r,i) visit neighbor i for the r-th time
[child 0 = parent]

• If-then-else’s in plans would permit different
execution orders in different contexts, but we
chose to allow only straight-line plans for
simplicity and efficiency

CS 412/413 Spring 2007 Introduction to Compilers 4

Coroutine Relationship

• VISIT instructions act as coroutine calls

Xi

p1

p2

VISIT(0,i) VISIT(1,i) VISIT(n,i)… … ……

VISIT(0,0) VISIT(1,0) VISIT(n,0)… ……

CS 412/413 Spring 2007 Introduction to Compilers 5

Interface

• The attributes of Xi constitute an interface
between the plans for p1 and p2.
– The plan for p1 evaluates inherited attributes of Xi

– The plan for p2 evaluates synthesized attributes of Xi

p1

p2

Xi

p1: X0 → X1 … Xi … Xn

p2: Xi →…

CS 412/413 Spring 2007 Introduction to Compilers 6

Evaluation Across the Interface

• VISIT instructions act as coroutine calls

Xi

p1

p2

VISIT(0,i) VISIT(1,i) VISIT(n,i)… … ……

VISIT(0,0) VISIT(1,0) VISIT(n,0)… ……

2

CS 412/413 Spring 2007 Introduction to Compilers 7

Consistency of Plans
• The plan for p1 must be consistent with the

plans for all productions

Xi → α

• The plan for p2 must be consistent with the
plans for all productions

A → α Xi β

CS 412/413 Spring 2007 Introduction to Compilers 8

Plans as Fragments of Topological Orders

• The plans must be constructed so that for any
derivation tree T, when the plan instances are
“wired up” by VISITs, the order of EVALs are a
topological order for D(T)

CS 412/413 Spring 2007 Introduction to Compilers 9

AG for which no such plans exist
Z → s X1 X2

x1.a = x2.d
X1.c = 1
x2.a = x1.d
X2.c = 2

Z → t X1 X2

X1.a = 3
X1.c = X2.b
X2.a = 4
X2.c = X1.b

X → u
X.b = X.a
X.d = X.c

CS 412/413 Spring 2007 Introduction to Compilers 10

AG for which no such plans exist

c da b
X

c da b
X

c da b
X

c da b
X

s

t

Z

Z

u

u u

u

CS 412/413 Spring 2007 Introduction to Compilers 11

UP and DOWN

Xi

p1

p2

DOWN(0,p2) DOWN(1,p2) DOWN(n,p2)

UP(0,p1,i) UP(1,p1,i) UP(n,p1,i)

VISIT(0,0) VISIT(1,0) VISIT(n,0)… ……

VISIT(0,i) VISIT(1,i) VISIT(n,i)… … ……

DOWN(visit_number, production) → instruction_pointer

UP(visit_number, production, child) → instruction_pointer

CS 412/413 Spring 2007 Introduction to Compilers 12

Evaluator
node := root;
ip := DOWN(0, root.rule);
repeat

case state of
Xi.a: {

evaluate Xi.a;
increment ip;
}

VISIT(r,i), i>0: { /* child visit */
ip := DOWN(r, Xi.rule);
node := Xi;
}

VISIT(r,0): { /* parent visit */
ip := UP(r, node.parent.rule, node.child_number);
node = node.parent;
}

end case
until node = root and instruction at ip = VISIT(1,0);

3

CS 412/413 Spring 2007 Introduction to Compilers 13

Partitions
• If such plans are to exist, there must exist, for each

nonterminal X, a partition of A(X) into classes A2n(X),

A2n-1(X), …, A2(X), A1(X), where
– even Ai(X) are subsets of IA(X)

– odd Ai(X) are subsets of SA(X)

s.t., for every derivation tree T, and every nonterminal

instance X in T, the attribute instances of X can be

evaluated in the order A2n(X), A2n-1(X), …, A2(X), A1(X).

Within each Ai(X), the order or evaluation is

unconstrained and may differ from plan to plan.

CS 412/413 Spring 2007 Introduction to Compilers 14

Partitions in Plans

• Every plan involving Xi must respect the partitioning of A(Xi)

Xi

A2n(Xi) A2n-2(Xi) A2(Xi)

A2n-1(Xi) A2n-3(Xi) A1(Xi)

VISIT(0,i) VISIT(1,i) VISIT(ni,i)… … ……

VISIT(0,0) VISIT(1,0) VISIT(n,0)… ……

CS 412/413 Spring 2007 Introduction to Compilers 15

Partitioned Attribute Grammar
• If, in addition to the existence of the partitions,

the grammar is locally acyclic, then it is called
partitioned.

CS 412/413 Spring 2007 Introduction to Compilers 16

Computing Plans from Partitions
• Suppose, for each nonterminal X, we know valid partition

A2n(X), A2n-1(X), …, A2(X), A1(X)

• To compute the plan for production p: X0 → X1 … Xn
– Start with Dp, the direct depencency graph of p

– For each i in [0..n], and each partition j for attributes of Xi,
collapse all input attribute occurrences of the partition class
Aj(Xi) into one node labeled VISIT(*,i) merging edges

– Add edges between consecutive partition classes of the given Xi

– Topological sort the resulting graph and fill in visit numbers in
place of *s

CS 412/413 Spring 2007 Introduction to Compilers 17

Example
Z → X1 X2

X1.a = 1
X2.a = X1.b
X1.c = X2.b
X2.c = X1.d
S.m = X2.d

X → u
X.b = X.a
X.d = X.c

c da b
X1

c da b
X2

Z

u u

m

Partitioning of A(X) = {{a}{b}{c}{d}}

CS 412/413 Spring 2007 Introduction to Compilers 18

Example
Z → X1 X2

c da b
X1

c da b
X2

Z
m

Partitioning of A(X) = {{a}{b}{c}{d}}

4

CS 412/413 Spring 2007 Introduction to Compilers 19

Example
Z → X1 X2

c visit(*,1)a visit(*,1)

X1

c visit(*,2)a visit(*,2)

X2

Z
m

④① ③②

⑨

⑦⑥⑤ ⑧

Plan: Eval(X1.a); Visit(0,1); Eval(X2.a); Visit(0,2);
Eval(X1.c); Visit(1,1); Eval(X2.c); Eval(Z.m); Visit(0,0)

Partitioning of A(X) = {{a}{b}{c}{d}}

CS 412/413 Spring 2007 Introduction to Compilers 20

Ordered Attribute Grammars
• For each nonterminal X

– Construct graph DS(X) = <A(X), E> that over-
approximates the transitive dependences that may
arise among the attributes of X in some derivation
tree

– Defer how.
– If DS(X) is cyclic

for any X
give up.

X
e f g

CS 412/413 Spring 2007 Introduction to Compilers 21

OAG: step 1
• For each nonterminal X

– Construct a graph DS(X) = <A(X), E> that over-
approximates the transitive dependences that may
arise among the attributes of X in some derivation
tree

– Defer how.
– If DS(X) is cyclic

for any X
give up.

X
e f g

CS 412/413 Spring 2007 Introduction to Compilers 22

OAG: step 2
• Attempt to compute a partition from DS(X)

without reference to the productions in which X
occurs, as follows:
– Topological sort DS(X) minimizing alternations

between IA(X) and SA(X).
– Each switch from inherited to synthesized (or vice

versa) is a boundary between classes of the
partition.

CS 412/413 Spring 2007 Introduction to Compilers 23

OAG: step 3
• Use the given method for finding a plan from

the partitions. If this fails (because topological
sort discovers a cycle), then fail.

CS 412/413 Spring 2007 Introduction to Compilers 24

OAG: step 1, cont.
• To compute DS(X) for all X

– Simultaniously take transitive closures of the direct
dependence graphs Dp for all p, and whenever an
edge between two attributes of the same
nonterminal occurrence is created, add it to every
occurrence of X.

– When finished, choose the attributes and edges of an
arbitrary occurrence of each nonterminal X as DS(X)

