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Static Attribute Evaluation
• Analyze the grammar and determine a fixed 

tree traversal scheme (with interleaved 
evaluations) such that for any possible 
derivation tree T, evaluations will be in 
topological order

• Partitioned attribute grammars are a large class 
that lends itself to efficient analysis and 
evaluation 
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Plans
• Each production X0 → X1…Xn will have one 

associated plan
• A plan is a linear sequence of instructions,

where an instruction is one of
– EVAL Xi.a evaluate attribute a of symbol Xi

– VISIT(r,i) visit neighbor i for the r-th time
[child 0 = parent]

• If-then-else’s in plans would permit different 
execution orders in different contexts, but we 
chose to allow only straight-line plans for 
simplicity and efficiency
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Coroutine Relationship

• VISIT instructions act as coroutine calls

Xi

p1

p2

VISIT(0,i) VISIT(1,i) VISIT(n,i)… … ……

VISIT(0,0) VISIT(1,0) VISIT(n,0)… ……
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Interface

• The attributes of Xi constitute an interface
between the plans for p1 and p2.
– The plan for p1 evaluates inherited attributes of Xi

– The plan for p2 evaluates synthesized attributes of Xi

p1

p2

Xi

p1: X0 → X1 … Xi … Xn

p2: Xi →…
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Evaluation Across the Interface

• VISIT instructions act as coroutine calls

Xi

p1

p2

VISIT(0,i) VISIT(1,i) VISIT(n,i)… … ……

VISIT(0,0) VISIT(1,0) VISIT(n,0)… ……
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Consistency of Plans
• The plan for p1 must be consistent with the 

plans for all productions 

Xi → α

• The plan for p2 must be consistent with the 
plans for all productions

A → α Xi β
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Plans as Fragments of Topological Orders

• The plans must be constructed so that for any 
derivation tree T, when the plan instances are 
“wired up” by VISITs, the order of EVALs are a 
topological order for D(T)
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AG for which no such plans exist
Z → s X1 X2

x1.a = x2.d
X1.c = 1
x2.a = x1.d
X2.c = 2

Z → t X1 X2

X1.a = 3
X1.c = X2.b
X2.a = 4
X2.c = X1.b

X → u
X.b = X.a
X.d = X.c
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AG for which no such plans exist

c da b
X

c da b
X

c da b
X

c da b
X

s

t

Z

Z

u

u u

u
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UP and DOWN

Xi

p1

p2

DOWN(0,p2) DOWN(1,p2) DOWN(n,p2)

UP(0,p1,i) UP(1,p1,i) UP(n,p1,i)

VISIT(0,0) VISIT(1,0) VISIT(n,0)… ……

VISIT(0,i) VISIT(1,i) VISIT(n,i)… … ……

DOWN(visit_number, production) → instruction_pointer

UP(visit_number, production, child) → instruction_pointer
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Evaluator
node := root;
ip := DOWN(0, root.rule);
repeat

case state of
Xi.a: {

evaluate Xi.a;
increment ip;
}

VISIT(r,i), i>0: { /* child visit */
ip := DOWN(r, Xi.rule); 
node := Xi;
}

VISIT(r,0): { /* parent visit */
ip := UP(r, node.parent.rule, node.child_number);
node = node.parent;
}

end case
until node = root and instruction at ip = VISIT(1,0);
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Partitions
• If such plans are to exist, there must exist, for each 

nonterminal X, a partition of A(X) into classes A2n(X), 

A2n-1(X), …, A2(X), A1(X), where
– even Ai(X) are subsets of IA(X)

– odd Ai(X) are subsets of SA(X)

s.t., for every derivation tree T, and every nonterminal

instance X in T, the attribute instances of X can be 

evaluated in the order A2n(X), A2n-1(X), …, A2(X), A1(X). 

Within each Ai(X), the order or evaluation is 

unconstrained and may differ from plan to plan.
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Partitions in Plans

• Every plan involving Xi must respect the partitioning of A(Xi)

Xi

A2n(Xi) A2n-2(Xi) A2(Xi)

A2n-1(Xi) A2n-3(Xi) A1(Xi)

VISIT(0,i) VISIT(1,i) VISIT(ni,i)… … ……

VISIT(0,0) VISIT(1,0) VISIT(n,0)… ……

CS 412/413   Spring 2007 Introduction to Compilers 15

Partitioned Attribute Grammar
• If, in addition to the existence of the partitions, 

the grammar is locally acyclic, then it is called 
partitioned.
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Computing Plans from Partitions
• Suppose, for each nonterminal X, we know valid partition

A2n(X), A2n-1(X), …, A2(X), A1(X)

• To compute the plan for production p: X0 → X1 … Xn
– Start with Dp, the direct depencency graph of p

– For each i in [0..n], and each partition j for attributes of Xi, 
collapse all input attribute occurrences of the partition class 
Aj(Xi) into one node labeled VISIT(*,i) merging edges

– Add edges between consecutive partition classes of the given Xi

– Topological sort the resulting graph and fill in visit numbers in 
place of *s
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Example
Z → X1 X2

X1.a = 1 
X2.a = X1.b
X1.c = X2.b
X2.c = X1.d
S.m = X2.d

X → u
X.b = X.a
X.d = X.c

c da b
X1

c da b
X2

Z

u u

m

Partitioning of A(X) = {{a}{b}{c}{d}}
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Example
Z → X1 X2

c da b
X1

c da b
X2

Z
m

Partitioning of A(X) = {{a}{b}{c}{d}}



4

CS 412/413   Spring 2007 Introduction to Compilers 19

Example
Z → X1 X2

c visit(*,1)a visit(*,1)

X1

c visit(*,2)a visit(*,2)

X2

Z
m

④① ③②

⑨

⑦⑥⑤ ⑧

Plan: Eval(X1.a); Visit(0,1); Eval(X2.a); Visit(0,2);
Eval(X1.c); Visit(1,1); Eval(X2.c); Eval(Z.m); Visit(0,0)

Partitioning of A(X) = {{a}{b}{c}{d}}
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Ordered Attribute Grammars
• For each nonterminal X

– Construct graph DS(X) = <A(X), E> that over-
approximates the transitive dependences that may 
arise among the attributes of X in some derivation 
tree 

– Defer how.
– If DS(X) is cyclic 

for any X
give up.

X
e f g
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OAG: step 1
• For each nonterminal X

– Construct a graph DS(X) = <A(X), E> that over-
approximates the transitive dependences that may 
arise among the attributes of X in some derivation 
tree 

– Defer how.
– If DS(X) is cyclic 

for any X
give up.

X
e f g
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OAG: step 2
• Attempt to compute a partition from DS(X) 

without reference to the productions in which X 
occurs, as follows:
– Topological sort DS(X) minimizing alternations 

between IA(X) and SA(X).
– Each switch from inherited to synthesized (or vice 

versa) is a boundary between classes of the 
partition.
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OAG: step 3
• Use the given method for finding a plan from 

the partitions.  If this fails (because topological 
sort discovers a cycle), then fail.
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OAG: step 1, cont.
• To compute DS(X) for all X

– Simultaniously take transitive closures of the direct 
dependence graphs Dp for all p, and whenever an 
edge between two attributes of the same 
nonterminal occurrence is created, add it to every
occurrence of X.

– When finished, choose the attributes and edges of an 
arbitrary occurrence of each nonterminal X as DS(X) 


