
1

CS 412/413 Spring 2007 Introduction to Compilers 1

CS412/CS413

Introduction to Compilers
Tim Teitelbaum

Lecture 16: Attribute Grammars
26 Feb 07

CS 412/413 Spring 2007 Introduction to Compilers 2

Attribute Grammars
• An extension of CFGs to define “semantics” of

sentences in language
• Knuth, 1968
• Intuition:

– Decorate each parse-tree node with attributes, i.e.,
variables defined by equations in terms of constants
and neighboring attributes in the tree

– Evaluate the attributes like a spreadsheet evaluates
cells defined by equations, i.e., order of evaluation
determined automatically

CS 412/413 Spring 2007 Introduction to Compilers 3

Attributes
• Let G be a context-free grammar 〈V,Σ,S,→〉

• Associate with every X ∈ (V ∪ Σ) a set of attributes A(X)

• Notation. If a ∈ A(X), we denote it X.a

• Let A(X) be partitioned into disjoint sets
– synthesized attributes, SA(X)

– inherited attributes, IA(X)

X
↓ ↑
IA SA

CS 412/413 Spring 2007 Introduction to Compilers 4

Occurrences
• Let p be a production X0→ X1…Xn of G
• Each Xi is a symbol occurrence of p
• Input(p) = IA(X0) ⊕ SA(X1) ⊕ … ⊕ SA(Xn)
• Output(p) = SA(X0) ⊕ IA(X1) ⊕ … ⊕ IA(Xn)
• Each attribute in Input(p) or Output(p) is an

attribute occurrence of p

X0 → X1 … Xn
↓ ↑
IA SA

↓ ↑
IA SA

↓ ↑
IA SA

CS 412/413 Spring 2007 Introduction to Compilers 5

Input and Output Occurrences

X0

X1 … Xn

↓ ↑
IA SA

↓ ↑
IA SA

↓ ↑
IA SA

CS 412/413 Spring 2007 Introduction to Compilers 6

Equations
• Let p be a production X0→ X1…Xn of G
• An attribute equation of p defines a∈Output(p)

in terms of attributes in Input(p) ⊕ Output(p)
• An attribute grammar is well formed if

– IA(S) = ∅
– SA(a) = ∅, for all a ∈ Σ
– Every output attribute of every production

has precisely 1 defining equation
• An attribute grammar is in normal form if only

input attributes occur on RHS of equations

2

CS 412/413 Spring 2007 Introduction to Compilers 7

Example
• Productions

S → E
E → E + E
E → NUM
E → ID
E → let ID = E in E

• Sample sentence
let x = 1 in let y = x+1 in x+y

• Attributes

Inherited: E.env
Synthesized: S.value, E.value, NUM.value, ID.name

CS 412/413 Spring 2007 Introduction to Compilers 8

Example, cont.
S → E

E.env = EmptyEnvironment()
S.value = E.value

E0 → E1 + E2

E1.env = E0.env
E2.env = E0.env
E0.value = E1.value + E2.value

E → NUM
E.value = NUM.value

E → ID
E.value = Lookup(ID.name, E.env)

E0 → let ID = E1 in E2

E1.env = E0.env
E2.env = Insert(ID.name, E1.value, E0.env)
E0.value = E2.value

CS 412/413 Spring 2007 Introduction to Compilers 9

Direct Dependency Graph
• Let p be a production X0→ X1…Xn of G

• Dp, the direct dependency graph of p, is the directed

graph 〈A(p),E(p)〉, where

– Nodes: A(p) = Input(p) ⊕ Output(p)

– Edges: E(p) = { 〈a1, a2〉 | a2 depends on a1 }

• An attribute grammar is locally acyclic if for every

production p, Dp is acyclic

CS 412/413 Spring 2007 Introduction to Compilers 10

Example, cont.

E0 → let ID = E1 in E2
E1.env = E0.env
E2.env = Insert(ID.name, E1.value, E0.env)
E0.value = E2.value

E0 → let ID = E1 in E2
↓
env

↑
value

↓
env

↓
env

↑
name

↑
value

↑
value

CS 412/413 Spring 2007 Introduction to Compilers 11

Dependency Graph
• Let T be a derivation tree for some x ∈ L(G)

– Each subtree corresponding to production p is a
production instance in T

– Each symbol occurrence in p is a symbol instance in T
– Each attribute occurrence in p is an attribute instance

in T
– Each edge in Dp is a dependence instance in T

• D(T), the dependency graph for T, has
– Nodes: the attribute instances of T
– Edges: the dependence instances of T

CS 412/413 Spring 2007 Introduction to Compilers 12

Example, cont.
let x = 1 in x S

E

NUM ID

↓
env

↑
value

↓
env

↓
env

↑
name

↑
value

↑
value

E EID

↑
value

↑
name

↑
value

let = in

3

CS 412/413 Spring 2007 Introduction to Compilers 13

Noncircularity
• An attribute grammar is noncircular if for every

derivation tree, T D(T) is acyclic
• We are only interested in noncircular grammars

CS 412/413 Spring 2007 Introduction to Compilers 14

Evaluation
• Given a derivation tree T, evaluate the attibute

instances of T in topological order w.r.t. D(T)

• Dynamic evaluation: Obtain the topological order using

either
– topological sort, or

– depth first search backwards from nodes of out-degree 0

• Static evaluation: Analyze the grammar in advance and

determine tree traversal schemes with interleaved

evaluations such that for any possible derivation tree T,

evaluations will be in topological order

CS 412/413 Spring 2007 Introduction to Compilers 15

Topological Sort
W := ∅;
for each node n with indegree(n)=0 do

W := W ∪ {n};
while W ≠ ∅ do

select n from W;
remove n from W;
for each successor n’ of n do

remove edge <n,n’>;
if indegree(n’)=0 then W := W ∪ {n’}

CS 412/413 Spring 2007 Introduction to Compilers 16

S-attributed
• An attribute grammar is S-attributed iff it only

has synthesized attributes.
• Evaluation: Use end-order traversal of

derivation tree (e.g., during a bottom-up parse)
to obtain topological evaluation order

• Yacc, Bison, and Cup only support S-attributed
grammars

CS 412/413 Spring 2007 Introduction to Compilers 17

L-attributed
• Defined so that can be evaluated in one left-to-

right pass, (e.g., during a top-down parse)

• Every RHS inherited attribute depends only on
– LHS inherited

– any RHS attribute to the left

• Every LHS synthesized attribute depends only on
– LHS inherited
– any RHS

CS 412/413 Spring 2007 Introduction to Compilers 18

Alternating Pass Evaluation
• Alternate between L-attributed and R-attributed

passes.
• In pass i, all attributes evaluated in previous

passes are known values available for during
the evaluations during pass i

• An attribute grammar is alternating pass if there
exists k alternating passes sufficient to evaluate
any derivation tree T

4

CS 412/413 Spring 2007 Introduction to Compilers 19

Efficient Use of Sequential Storage

• Reverse of left-to-right endorder is right-to-left
preorder (and vice-versa) so can make efficient
use of sequential storage medium

a
b e

c d f g

Endorder: c d b f g e a
Right-to-left preorder: a e g f b d c

