CS412/CS413

Introduction to Compilers
Tim Teitelbaum

Lecture 14: Static Semantics
21 Feb 07

CS 412/413 Spring 2007 Introduction to Compilers 1

Type Inference Systems

e Type inference systems define types for all
legal programs in a language

e Type inference systems are to type-checking:
— As regular expressions are to lexical analysis
— As context-free grammars are to syntax analysis

CS 412/413 Spring 2007 Introduction to Compilers 2

Type Judgments

e The type judgment:
I-E:T
means:
“E is a well-typed construct of type T”

* Type judgments are to type inference systems as
sentential forms are to context-free grammars

* Type checking program P is demonstrating the validity of
the type judgment |- P : T for some type T

« Sample valid type judgments for program fragments:

|-2:int |-2* (@ +4):int
|- true : bool |- (true 2 2 : 3) :int
CS 412/413 Spring 2007 Introduction to Compilers 3

Deriving a Type Judgment

Consider the judgment:
|-(?2:3):int

 What do we need in order to decide that this is a
valid type judgment?

* b must be a bool (]- b: bool)
e 2 must be an int (|- 2: int)
e 3 must be an int (|- 3: int)

CS 412/413 Spring 2007 Introduction to Compilers 4

Hypothetical Type Judgments

* The hypothetical type judgment
Al-E:T
means
“In the type context A expression E is a
well-typed expression with type T ”

* A type context is a set of type bindings id : T
(i.e., a type context is a symbol table)

« Sample valid hypothetical type judgments

b: bool |-b : bool
|-2+2:int
b: bool, x:int |- (b?2:x) :int
b: bool, x: int |- b : bool
b: bool, x: int [-2 + 2 :int

CS 412/413 Spring 2007 Introduction to Compilers 5

Deriving a Judgment

e To show:
b: bool, x: int |- (b? 2 : x) : int

* Need to show:

b: bool, x: int |- b : bool
b: bool, x:int |- 2 :int
b: bool, x: int |- x : int

CS 412/413 Spring 2007 Introduction to Compilers 6

General Rule

= For any type environment A, expressions E, E;
and E,, the judgment

Al-(E?E:E):T

is valid if:
A |- E : bool
Al-E T
Al-E,:T
CS 412/413 Spring 2007 Introduction to Compilers 7

Inference Rule Schema

Premises (a.k.a., antecedant)

- ™
Al-E:bool A|-E;:T A|-ExT

(if-rule)
Al-(E?E :E):T

~—
Conclusion (a.k.a., consequent)

» Holds for any choice of A, E, E;, E,, and T

CS 412/413 Spring 2007 Introduction to Compilers 8

Why Inference Rules?

« Inference rules: compact, precise language for
specifying static semantics (can specify languages in
~20 pages vs. 100's of pages of Java Language
Specification)

« Inference rules are to type inference systems as
productions are to context-free grammars

* Type judgments are to type inference systems as non-
terminals are to context-free grammars

« Inference rules correspond directly to recursive AST
traversal that implements them

* Type checking is attempt to prove that type judgments
A |-E : T are derivable

CS 412/413 Spring 2007 Introduction to Compilers 9

Meaning of Inference Rule

e Inference rule says:
given that the antecedent judgments are derivable
— with a uniform substitution for meta-variables (i.e., A, E;, E,)
then the consequent judgment is derivable
— with the same uniform substitution for the meta-variables

Al-E;:int A:int A:int
Al-E,:int

)
Al-E,+E,:int

CS 412/413 Spring 2007 Introduction to Compilers 10

Proof Tree
« A construct is well-typed if there exists a type
derivation for a type judgment for the construct
* Type derivation is a proof tree

* Type derivations are to type inference systems as
derivations are to context-free grammars

* Example: if A1 = b: bool, x: int, then:

Al |-b:bool Al|-2:int Al|-3:int

Al |- b : bool Al |- 2+3 :int Al |-x :int

Al - (b?2+3:x):int

CS 412/413 Spring 2007 Introduction to Compilers 11

More about Inference Rules
« No premises = axiom

A |- true : bool

= An inference rule with no premises is analogous to a
production with no non-terminals on the right hand side

e A judgment may be proved in more than one way

A |-E, : float A |-E; : float
A |-E,: float A|-E,:int
A|-E,+ E,: float A|-E, + E,: float

* No need to search for rules to apply -- they correspond
to nodes in the AST

CS 412/413 Spring 2007 Introduction to Compilers 12

Type Judgments for Statements

« Statements that have no value are said to have type
void, i.e., judgment
|- S : void
means “S is a well-typed statement with no result type”

* ML uses unit instead of void

CS 412/413 Spring 2007 Introduction to Compilers 13

While Statements

« Rule for while statements:

A |-E: bool
Al-S:T ,
- — (while)
A |- while (E) S: void
* Why void type?
CS 412/413 Spring 2007 Introduction to Compilers 14

Assignment (Expression) Statements

Aid:TI|-E:T

Aid: TI-id=E:T (variable-assign)

Al-Eg: T
Al-E,:int
A |- E; @ array[T]
Al-ElE]=E,:

array-assign
T(y-assign)

CS 412/413 Spring 2007 Introduction to Compilers 15

Sequence Statements

* Rule: A sequence of statements is well-typed if
the first statement is well-typed, and the
remaining are well-typed too:

Al-S,:T,
Al-(S,; ...;5S) : T
1= G2 380 1 T (sequence)
Al-(S1;S,;...:Sy) : T,
€S 412/413 Spring 2007 Introduction to Compilers 16

Declaration List

* What about variable declarations?
e Declarations add entries to the environment
(in the symbol table)

Al-id: T[=E] :void
A id:TI-(S,; ... ;S,) = void (declaration)
Al-(d:T[=EL S,; ..;S,) :void

CS 412/413 Spring 2007 Introduction to Compilers 17

Function Calls

« If expression E is a function value, it has a type
ToxTox..xT,—>T,

« T, are argument types; T, is return type

» How to type-check function call E(E,,...,E,))?

Al-E : TixTyx.xT,—>T,
Al-E T, (ctn
Al-E(E,...,E) : T,

(function-call)

CS 412/413 Spring 2007 Introduction to Compilers 18

Function Declarations

« Consider a function declaration of the form
T, f(T,a,,..,T,a,) {returnE;}

e Type of function body must match declared
return type of function, i.e., E: T,

e ... but in what type context?

CS 412/413 Spring 2007 Introduction to Compilers 19

Add Arguments to Environment!

e Let A be the context surrounding the function
declaration. Then the function declaration

T f(T,a,..,T,a,) {returnE;}
is well-formed if

Aay Ty, 3T |-E:T,

e ...but what about recursion?
Need: f: T xTx..xT,—>T, € A

CS 412/413 Spring 2007 Introduction to Compilers 20

Recursive Function Example

e Factorial:

int fact(int x) {
if (x==0) return 1;
else return x * fact(x - 1);

}

« Prove: A |- x * fact(x-1) : int
Where: A = { fact: int—int, x : int }

CS 412/413 Spring 2007 Introduction to Compilers 21

Mutual Recursion

e Example:
int f(int x) { return g(x) + 1; }
int g(int x) { return f(x) - 1; }

« Need environment containing at least
f:int —> int, g: int > int
when checking both f and g

= Two-pass approach:

— Scan top level of AST picking up all function signatures
and creating an environment binding all global identifiers

— Type-check each function individually using this global
environment

CS 412/413 Spring 2007 Introduction to Compilers 22

How to Check Return?

Al-E:T

(returnl)
A |- return E : void

* A return statement produces no value for its
containing context to use

« Does not return control to containing context

e Suppose we use type void...

e ...then how to make sure the return type of the
current function is T ?

CS 412/413 Spring 2007 Introduction to Compilers 23

Put Return in the Symbol Table

» Add a special entry { return_fun : T } when we start
checking the function “f”, look up this entry when we hit
a return statement.

e Tocheck T, f (T, a,.., T,a,) {returnsS; }in
environment A, need to check:

AagiTy o, @, i T return_f:T [-S:T,

A|l-E:T retunf:TeA
A |- return E : void

(return)

CS 412/413 Spring 2007 Introduction to Compilers 24

Static Semantics Summary

* Type inference system = formal specification of
type-checking rules

« Concise form of static semantics: typing rules
expressed as inference rules

* Expression and statements are well-formed (or

well-typed) if a typing derivation (proof tree)
can be constructed using the inference rules

CS 412/413 Spring 2007 Introduction to Compilers 25

