
1

CS 412/413 Spring 2007 Introduction to Compilers 1

CS412/CS413

Introduction to Compilers
Tim Teitelbaum

Lecture 13: Types and Type-Checking
19 Feb 07

CS 412/413 Spring 2007 Introduction to Compilers 2

Semantic Analysis
• Last time:

– Semantic errors related to scopes
– Symbol tables
– Name resolution

• This lecture:
– Semantic errors related to types
– Type system concepts
– Types and type-checking

CS 412/413 Spring 2007 Introduction to Compilers 3

What Are Types?
• Types describe the values computed during the

execution of the program

• Essentially, types are predicate on values
– E.g., “int x” in Java means “x ∈ [-231, 231)”
– Think: “type = set of possible values”

• Type errors: improper, type-inconsistent
operations during program execution

• Type-safety: absence of type errors at run time
CS 412/413 Spring 2007 Introduction to Compilers 4

How to Ensure Type-Safety

• Bind (assign) types, then check types

– Type binding: defines type for constructs in
the program (e.g., variables, functions)
• Can be either explicit (int x) or implicit (x = 1)
• Type consistency (safety) = correctness with

respect to the type bindings

– Type checking: determine if the program
correctly uses the type bindings
• Enforce a set of type-checking rules

CS 412/413 Spring 2007 Introduction to Compilers 5

Type Checking
• Type checking: static semantic checks to

enforce the type safety of the program

• Examples:
– Unary and binary operators (e.g., +, ==, []) must

receive operands of the proper type
– Functions must be invoked with the right number

and type of arguments
– Return statements must agree with the return type
– In assignments, assigned value must be compatible

with type of variable on LHS.
– Class members accessed appropriately

CS 412/413 Spring 2007 Introduction to Compilers 6

Static vs. Dynamic Typing
• Static and dynamic typing refer to type

definitions (i.e., bindings of types to variables,
expressions, etc.)

– Statically typed language: types are defined and
checked at compile-time, and do not change during
the execution of the program

• E.g., C, Java, Pascal

– Dynamically typed language: types defined and
checked at run-time, during program execution

• E.g., Lisp, Scheme, Smalltalk

2

CS 412/413 Spring 2007 Introduction to Compilers 7

Strong vs. Weak Typing
• Strong and weak typing refer to how much

type consistency is enforced

– Strongly typed languages: guarantees that
accepted programs are type-safe

– Weakly typed languages: allow programs that
contain type errors

• Can achieve strong typing using either
static or dynamic typing

CS 412/413 Spring 2007 Introduction to Compilers 8

Soundness

• Sound type systems: can statically ensure that
the program is type-safe

• Soundness implies strong typing
• Static type safety requires a conservative

approximation of the values that may occur
during all possible executions
– May reject type-safe programs
– Need to be expressive: reject as few type-safe

programs as possible

CS 412/413 Spring 2007 Introduction to Compilers 9

Concept Summary

• Static vs dynamic typing: when to define/check types?

• Strong vs weak typing: how many type errors?

• Sound type systems: statically catch all type errors

CS 412/413 Spring 2007 Introduction to Compilers 10

Classification

Strong Typing Weak Typing

Static Typing

Dynamic Typing

Java

ML

Modula-3

Pascal C

Scheme
PostScript

Smalltalk

assembly code

C++

CS 412/413 Spring 2007 Introduction to Compilers 11

Why Static Checking?

• Efficient code
– Dynamic checks slow down the program

• Guarantees that all executions will be safe
– Dynamic checking gives safety guarantees only for

some execution of the program

• But is conservative for sound systems
– Needs to be expressive: reject few type-safe programs

CS 412/413 Spring 2007 Introduction to Compilers 12

Type Systems

• Type is predicate on value

• Type expressions: describe the possible types in
the program: int, string, array[], Object, etc.

• Type system: defines types for language
constructs (e.g., expressions, statements)

3

CS 412/413 Spring 2007 Introduction to Compilers 13

Type Expressions
• Languages have basic types

(a.k.a. primitive types or ground types)
– E.g., int, char, boolean

• Build type expressions using basic types:
– Type constructors
– Type aliases

CS 412/413 Spring 2007 Introduction to Compilers 14

Array Types
• Various kinds of array types in different programming

languages

• array(T) : array with elements of type T and no bounds
– C, Java: int [], Modula-3: array of integer

• array(T, S) : array with size
– C: int[10], Modula-3: array[10] of integer
– May be indexed 0..size-1

• array(T,L,U) : array with upper/lower bounds
– Pascal or Ada: array[2 .. 5] of integer

• array(T, S1, …, Sn) : multi-dimensional arrays
– FORTRAN: real(3,5)

CS 412/413 Spring 2007 Introduction to Compilers 15

Record Types

• A record is {id1: T1, … , idn: Tn} for some
identifiers idi and types Ti

• Supports access operations on each field,
with corresponding type

• C: struct { int a; float b; }
• Pascal: record a: integer; b: real; end
• Objects: generalize the notion of records

CS 412/413 Spring 2007 Introduction to Compilers 16

Pointer Types

• Pointer types characterize values that are
addresses of variables of other types

• Pointer(T) : pointer to an object of type T

• C pointers: T* (e.g., int *x;)
• Pascal pointers: ^T (e.g., x: ^integer;)
• Java: object references

CS 412/413 Spring 2007 Introduction to Compilers 17

Function Types
• Type: T1×T2 × … × Tn → Tr

• Function value can be invoked with some argument
expressions with types Ti, returns return type Tr

• C functions: int pow(int x, int y)
type: int × int→ int

• Java: methods have function types

• Some languages have first-class functions
– usually in functional languages, e.g., ML, LISP
– C and C++ have function pointers
– Java doesn’t

CS 412/413 Spring 2007 Introduction to Compilers 18

Type Aliases
• Some languages allow type aliases (type

definitions, equates)
– C: typedef int int_array[];
– Modula-3: type int_array = array of int;
– Java doesn’t allow type aliases

• Aliases are not type constructors!
– int_array is the same type as int []

• Different type expressions may denote the
same type

4

CS 412/413 Spring 2007 Introduction to Compilers 19

Implementation
• Use a separate class hierarchy for types:

class BaseType extends Type { … }
class IntType extends BaseType { … }
class BoolType extends Base Type { … }
class ArrayType extends Type { Type elemType; }
class FunctionType extends Type { … }

• Semantic analysis translates all type
expressions to type objects

• Symbol table binds name to type object

CS 412/413 Spring 2007 Introduction to Compilers 20

Type Comparison

• Option 1: implement a method T1.Equals(T2)
– Must compare type trees of T1 and T2
– For object-oriented language: also need sub-typing:

T1.SubtypeOf(T2)

• Option 2: use unique objects for each distinct type
– each type expression (e.g., array[int]) resolved to

same type object everywhere
– Faster type comparison: can use ==
– Object-oriented: check subtyping of type objects

CS 412/413 Spring 2007 Introduction to Compilers 21

Creating Type Objects
• Build types while parsing – use a syntax-

directed definition:

non terminal Type type
type ::= BOOLEAN

{: RESULT = new BoolType(); :}
| ARRAY LBRACKET type:t RBRACKET

{: RESULT = new ArrayType(t); :}

• Type objects = AST nodes for type expressions

CS 412/413 Spring 2007 Introduction to Compilers 22

Processing Type Declarations
• Type declarations add new identifiers and

their types in the symbol tables
• Class definitions must be added to symbol

table:
class_defn ::= CLASS ID:id { decls:d }

• Forward references require multiple passes
over AST to collect legal names

class A { B b; }
class B { … }

CS 412/413 Spring 2007 Introduction to Compilers 23

Type-Checking
• Type-checking = verify typing rules

“operands of + must be integer expressions; the result
is an integer expression”

• Option 1: Implement using syntax-directed
definitions (type-check during the parsing)

expr ::= expr:t1 PLUS expr:t2
{: if (t1 == IntType && t2 == IntType)

RESULT = IntType;
else throw new TypeCheckError(“+”);

:}

CS 412/413 Spring 2007 Introduction to Compilers 24

Type-Checking
Option 2: implement type-checking by an AST visitor

class typeCheck implements Visitor {
Object visit(Add e, Object symbolTable) {

Type t1 = (int) e.e1.accept(this, symbolTable);
Type t2 = (int) e.e2.accept(this, symbolTable);
if (t1 == Int && t2 == Int) return Int;
else throw new TypeCheckError(“+”);
}

Object visit(Num e, Object symbolTable) {
return Int;
}

Object visit(Id e, Object symbolTable) {
return (SymbolTable)symbolTable.lookupType(e);
}

}

5

CS 412/413 Spring 2007 Introduction to Compilers 25

Next Time: Static Semantics

• Static semantics = mathematical description of
typing rules for the language

• Static semantics formally defines types for all
legal language ASTs

