CS412/Cs413

Introduction to Compilers
Tim Teitelbaum

Lecture 5: Context-Free Grammars
31 Jan 07

CS 412/413 Spring 2007 Introduction to Compilers 1

Outline

¢ Context-Free Grammars (CFGs)
¢ Derivations

e Parse trees and abstract syntax
e Ambiguous grammars

CS 412/413 Spring 2007 Introduction to Compilers 2

Where We Are

Source code if(b==0)a=b;
(character stream)

Lexical Analysis

e [l ol=ToDla=[o]]
Syntax Analysis
" (Parsing)
Abstract Syntax /==< \/=\ _____________ J
Tree (AST) b 0 a b
Semantic Analysis
CS 412/413 Spring 2007 Introduction to Compilers 3

Syntax Analysis Example

if (b ==(0))a=Db;
Source code while (a I='1) {
(token stream) stdio.print(a);
a=a-1;
}
}
Abstract Syntax
Tree ‘ block \h'|
_ _/lf_stmt\\ w ' ||_ e_stmt\bI)
TN TN P~
varilable con?tant varllable cor}stant explr_stmt /=\
b 0 a 1 eaall
stdio/ \print varliable
a
CS 412/413 Spring 2007 Introduction to Compilers 4

Syntax Analysis Overview

e Goal: determine if the input token stream
satisfies the syntax of a legal program, and if
so, identify its structure

¢ We need:
— An expressive way to describe the syntax

— An acceptor mechanism that determines if the input
token stream satisfies that syntax description

— A way to recover the syntactic structure

CS 412/413 Spring 2007 Introduction to Compilers 5

Why Not Regular Expressions?

* Reason: they don't have enough power to express the syntax
of programming languages

¢ Example: nested bracketed constructs (e.g., blocks and
expressions)

— Language of balanced parentheses

{0, 00, (0 (DO, OO, (OIO) ((ONO)), ete. 3
needs unbounded counting to be recognized.

CS 412/413 Spring 2007 Introduction to Compilers 6

Prerequisites: Language Theory (review)

e Let I be finite set of symbols, an alphabet

e >* denotes the set of all finite strings of symbols in =

¢ ¢ denotes the empty string

e Any subset L ¢ * is called a language

e If L, and L, are languages, then L, L, is the
concatenation of L, and L,, i.e., the set of all pair-wise
concatenations of strings from L, and L,, respectively

e LetL < =* be a language. Then
- L=

— LMt=LL" foralln>0

CS 412/413 Spring 2007 Introduction to Compilers 7

Prerequisites: Binary Relations

e IfS, and S, are sets, S;xS, denotes the Cartesian
product, the set { (s;,S,) | sy € S; and s, € S,}
e SxSis written S?

e If S, and S, are sets, a set R < S;xS, is called a binary
relation between S, and S,

e If(s;s, € R, we writes; R's,

CS 412/413 Spring 2007 Introduction to Compilers 8

Prerequisites: Composition, Powers and Closures

e If R; = 5,xS, and R, c S,xS; are relations, R;R, , the
composition of Ry and R,, is { (x,z2) | xR,y and y R, z}
o If Ris a relation in SxS , then
— R0= { <x,x> | x € S}, the identity relation over S
— fori>0,R*' =R eRI
— in particular
e RI=R;
¢ RZis ReR
— R*=R'UR2U R3U ..., the transitive closure of R
— R* =R0y R*, the transitive reflexive closure of R

CS 412/413 Spring 2007 Introduction to Compilers 9

Context-Free Grammars

o A Context-Free Grammar (CFG) is a 4-tuple (V,%,S,—),
where
— Vs a finite set of nonterminal symbols
— X is a finite set of terminal symbols
— S e Vis a distinguished nonterminal, the start symbol
- = < Vx (Vux)*is a finite relation, the productions

e Sample CFG (V,%,S,—), where
— Vis { S}, i.e., there is one nonterminal S
- 2is{a, b}, i.e., there are two terminal symbols “a” and “b”
— S is start symbol
— —is {(5,asbs), (S,e)}
i.e., there are two productions S—aSbS and S—¢

CS 412/413 Spring 2007 Introduction to Compilers 10

More notation and typographical conventions

e A, B, C, ... are nonterminals

e a, b, ¢, ... are terminals

e ..., X, Y, Z are either terminals or nonterminals

e ..., W, X, Y, z are strings of terminals

* o, B, 7,8, ... are strings of terminals or nonterminals
¢ A—a denotes production (A,a)

¢ In production A—»a
— Ais the lefthand side (LHS)
— a is the righthand side (RHS)

e A—ay|...|a, denotes the n productions A— ay ,..., A—> a,

CS 412/413 Spring 2007 Introduction to Compilers 11

Sample Grammar (ctd)

¢ It is not uncommon to just say:
Let G be the grammar with productions
S —>aShS | ¢
and infer the nonterminals, terminals, and
start symbol from the productions by
invoking the conventions

CS 412/413 Spring 2007 Introduction to Compilers 12

Direct Derivations

e Let G =(V,z,5,~) be a CFG. The “directly derives”
relation (=) is defined as { (aAy, afy) | A>p }.

e Example
— Let G be the grammar with productions S — aSbs | ¢
— Then
o S = aShs nonterminal is LHS of production
asSbS = aaSbSbs string is RHS of production

aaSbSbS = aabSbSs
aabSbS = aabbSs
aabbS = aabbaSbS
aabbaSbS = aabbabS
aabbabS = aabbab

CS 412/413 Spring 2007 Introduction to Compilers 13

Context Free Languages

e Let G =(V,%,S,») be a CFG. The language
generated by G, denoted L(G) = {x | S=>*x }

e Let ay=>*a,. A derivation of o, from ay is a
sequence of strings og,ay,..., o, such that
o;=0, for 0<i<n. We write ay=a; ... = o,

¢ Context Free Languages (CFLs) are the
languages generated by context-free grammars

CS 412/413 Spring 2007 Introduction to Compilers 14

Example

e Let G be the grammar with productions S — aSbs | ¢

e Then

S = aSbS = aaSbSbS = aabSbS = aabbS = aabbaSbS =
aabbabS = aabbab

e I.e., aabbab is in L(G)

CS 412/413 Spring 2007 Introduction to Compilers 15

Grammars and Acceptors

o Acceptors for context-free grammars

Context-Free . _ |
Grammar ;

e _{Yes, .|fx e L(G)

Token No, if x ¢ L(G)

Stream

X —

e Syntax analyzers (parsers) = CFG acceptors that also
output the corresponding derivation when the token
stream is accepted

— Various kinds: LL(k), LR(k), SLR, LALR

CS 412/413 Spring 2007 Introduction to Compilers 16

Every Regular Language is a Context
Free Language
¢ Inductively build a CFG for each RE

) S—>e¢

a S—>a

R;R, $—>5,S,

Ri IR, $S->51S,

R, * S—>S,S |
where:

G; = grammar for R,, with start symbol S,
G, = grammar for R,, with start symbol S,

CS 412/413 Spring 2007 Introduction to Compilers 17

Sum Grammar

e Grammar:
S»>E+S | E
E— number | (S)
e Expanded:
S>E+S 4 productions
S >E 2 nonterminals: S E
E — number 4 terminals: () + number
E—(S) start symbol S

¢ Example accepted input:
(142+(3+4))+5

CS 412/413 Spring 2007 Introduction to Compilers 18

Derivation Example

S—»> E+S|E
E — number | (S)

Derive (1+2+(3+4))+5
S = E+S

= (S)+S
E+S)+S
1+S)+S

1+ E+S)+S
1+2+S)+S
1+24E)+S
1+2+(S))+S
1+2+(E+S) +S
1+2+(3+S))+S
1+2+(3+E))+S
1+2+(3+4))+S
1+2+(3+4))+E
1+2+(3+4))+5

CS 412/413 Spring 2007 Introduction to Compilers 19

L R VA VR R VR

Derivations and Parse Trees

VRN
/I‘E\+ 1 e Parse Tree = tree representation
P (S) E of the derivation
_I:'arse Es ‘5 « Leaves of tree are terminals
ree |} N « Internal nodes: nonterminals
1 E E * No information about order of
A derivation steps
(5)
E+2
3
Derivation 4

SSE+S=(S)+S=>(E+S)+S=>(1+S)4S=> (1 +E+S)+S= ...
=>(1+2+(S))+S=(1+2+(E+S))+S=>..=>(1+2+ (3 +E)+S
= .. =(1 + 2+ (3+4))+5

CS 412/413 Spring 2007 Introduction to Compilers 20

Parse Tree vs. AST

¢ Parse tree also called “concrete syntax”

Derivation Order

¢ Can choose to apply productions in any order; select any
nonterminal A such that aAy = oy

¢ Two standard orders: leftmost and rightmost -- useful for
different kinds of automatic parsing

o Leftmost derivation: Always replace leftmost nonterminal
E+S=1+S

¢ Rightmost derivation: Always replace rightmost
nonterminal
E+S=>E+E+S

CS 412/413 Spring 2007 Introduction to Compilers 22

. /§\S Abstract
+
ST Syntax Tree
Parse Tree (/ﬁ\) E 2N
(Concrete + 5 ::> 5
Syntax) f kg 1/ \+
2 7k
/IN 3/ \4
()
FF + E Discards (abstracts)
3 4 unneeded information
CS 412/413 Spring 2007 Introduction to Compilers 21
Example

e SH>E+S|E
E — number | (S)

o Left-most derivation

S E+5=(S)+S=(E+S)+S= (L +S)+5 = (1+E+S)+S =
§1+2+5 +5 = (14+2+E)+S = (1+2+(5)2+s = (1+2+(E+S))+S -

i g - ter

. Right most derivation
S=E+S = E+E S E+5 = (S)+5 = E +5)+5 :éE+E+S +5 =
(E4+E+E)+5 = (E4+E+(S))+5 = (E+E+(E+S))+5 = (E+E+(E+E))+5
= (E+E+(E+4)S+5 %E+E+(3+4))+5 = (EF2+(3+4))+5 =
(1+2+(3+4))+5

. Sacrlne parse tree: same productions chosen, different
order

CS 412/413 Spring 2007 Introduction to Compilers 23

Parse Trees

¢ In example grammar, leftmost and rightmost
derivations produced identical parse trees

¢ + operator associates to right in parse tree
regardless of derivation order

+
+/ \5
N
(1+2+(G+4)+5 [0 R
ZENVAN
3 4

CS 412/413 Spring 2007 Introduction to Compilers 24

An Ambiguous Grammar

e + associates to right because of right-recursive
producton S—>E+S

¢ Consider another grammar:
S —>S+S | S*S | number
¢ Ambiguous grammar = different derivations of
the same string (may) produce different parse

trees

CS 412/413 Spring 2007 Introduction to Compilers 25

Differing Parse Trees

S—S+S |S*S | number

¢ Consider expression 1 + 2 * 3

e Derivation 1: S=S+S=1+S=1+S*S~
=1+2*S=21+2%*3

e Derivation 2: S-S*S-S*3-S+S*3
S +2*351+2%3

+\ +/\
/ /*\ * /N
1 2 3 1 2 3

CS 412/413 Spring 2007 Introduction to Compilers 26

Impact of Ambiguity

« Different parse trees correspond to
different evaluations!

¢ Meaning of program not defined

+
Iner AN

CS 412/413 Spring 2007 Introduction to Compilers 27

Eliminating Ambiguity

¢ Often can eliminate ambiguity by adding
nonterminals & allowing recursion only on right
or left

S
S > S+T | T bt
VAN
T — T*num | num T 1"*3
1 2

« T nonterminal enforces precedence
o Left-recursion : left-associativity

CS 412/413 Spring 2007 Introduction to Compilers 28

Context Free Grammars

¢ Context-free grammars allow concise syntax
specification of programming languages

» A CFG specifies how to convert token stream to
parse tree (if unambiguous!)

CS 412/413 Spring 2007 Introduction to Compilers 29

