CS412/413

Introduction to Compilers
Tim Teitelbaum

Lecture 4: Lexical Analyzers
29 Jan 07

Outline

¢ DFA state minimization

e Lexical analyzers

* Automating lexical analysis

¢ Jlex lexical analyzer generator

CS 412/413 Spring 2007 Introduction to Compilers

Finite Automata

¢ Finite automata:
— States, transitions between states
— Initial state, set of final states

e DFA: Deterministic Finite Automaton
— Each transition consumes an input character
— Each transition is uniquely determined by the input character

¢ NFA: Non-deterministic Finite Automaton
— ¢g-transitions, which do not consume input characters

— Multiple transitions from the same state on the same input
character

CS 412/413 Spring 2007 Introduction to Compilers 3

From RE to DFA

e Two steps:
— Convert the regular expression to an NFA
— Convert the resulting NFA to a DFA

¢ The generated DFAs may have a large number of
states

o State Minimization is an optimization that converts a
DFA to another DFA that recognizes the same
language and has a minimum number of states

CS 412/413 Spring 2007 Introduction to Compilers

State Minimization

e Example:

— DFAL:

b b
- DFA2:

— Both DFAs accept: b*ab*a

CS 412/413 Spring 2007 Introduction to Compilers 5

State Minimization

o Stepl. Partition states of original DFA into
maximal-sized groups of “equivalent” states

S= {Gll lGn}

\bi}
e Step 2. Construct the minimized DFA such
that there is a state for each group G,

()b b

CS 412/413 Spring 2007 Introduction to Compilers

DFA Minimization
e Stepl. Partition states of original DFA into maximal-

sized groups of “equivalent” states

— Step 1a. Discard states not reachable from start state

— Step 1b. Initial partition is S = {Final, Non-final}

— Step 1c. Repeatedly refine the partition {G;,...,G,} while
some group G; contains states p and q such that for some
symbol a, transitions from p and g on a are to different

groups
G G @G, (or undefined)
x i 2y
7~ N AN
B .a. B B
Oy 7 ey
1 [' 1 1
\ [! \ 1
\ U \ s a G
N ‘.o ‘..o
CS 412/413 Spring 2007 Introduction to Compilers 7

DFA Minimization
o Stepl. Partition states of original DFA into maximal-
sized groups of “equivalent” states

— Step 1a. Discard states not reachable from start state

— Step 1b. Initial partition is S = {Final, Non-final}

— Step 1c. Repeatedly refine the partition {G;,...,G,} while
some group G; contains states p and q such that for some
symbol a, transitions from p and g on a are to different
groups

Gy(or undefined)
Pl N
i XEY
N~ G, .o
CS 412/413 Spring 2007 Introduction to Compilers 8

Optimized Acceptor

Lexical Analyzers vs Acceptors

¢ Lexical analyzers use the same mechanism,
but they:
— Have multiple RE descriptions for multiple tokens

— Output a sequence of matching tokens (or an
error)

— Always return the longest matching token

— For multiple longest matching tokens, use rule
priorities

CS 412/413 Spring 2007 Introduction to Compilers 10

Regular RE = NFA
Expression
NFA = DFA
Minimize DFA
Input o DFA. R Yes, if w € L(R)
String Simulation No, if w & L(R)
CS 412/413 Spring 2007 Introduction to Compilers 9
Lexical Analyzers
REsfor o o || RE= NFA
1+ Ry
Tokens NFA = DFA
Minimize DFA
[
Character DFA
program —— . . |1 Token stream
Stream Simulation (and errors)
CS 412/413 Spring 2007 Introduction to Compilers 11

Handling Multiple REs

Construct one NFA for each RE

Associate the final state of each NFA with the given RE
Combine NFAs for all REs into one NFA

Convert NFA to minimized DFA, associating each final DFA state
with the highest priority RE of the corresponding NFA states

Minimized DFA

O
00000

CS 412/413 Spring 2007 Introduction to Compilers 12

Scanning Algorithm

¢ Scan input and simulate DFA until no further
transition is possible keeping track of most recently
visited final state F

¢ Roll input back to position at the time F was entered
¢ Emit token associated with F

¢ For each successive token, scan remaining input and
simulate DFA from the start state, i.e., scanner is
“stateless” (NB. this is to be changed below.)

CS 412/413 Spring 2007 Introduction to Compilers 13

Example of Roll Back

Consider R = aa | ba | aabb and input: aaba

e Reach state 3 with no transition on next character a
¢ Roll input back to position on entering state 2 (i.e.,
having read aa)

e Emit token for aa

CS 412/413 Spring 2007 Introduction to Compilers 14

Automating Lexical Analysis

o All of the lexical analysis process can be
automated
— RE — NFA — DFA — Minimized DFA
— Minimized DFA — Lexical Analyzer
(DFA Simulation Program)

¢ We only need to specify:

— Regular expressions for the tokens
— Rule priorities for multiple longest match cases

CS 412/413 Spring 2007 Introduction to Compilers 15

Lexical Analyzer Generators

REs for | | Jlex
ex.| | — .
Tokens Compiler
javac
Compiler
l
Character program | ——*| lex.class I——’ Token stream
Stream (and errors)
CS 412/413 Spring 2007 Introduction to Compilers 16

Jlex Specification File

¢ Jlex = Lexical analyzer generator
— written in Java
— generates a Java lexical analyzer

e Has three parts:
— Preamble, which contains package/import declarations
— Definitions, which contains regular expression abbreviations
— Regular expressions and actions, which contains:
« the list of regular expressions for all the tokens

» Corresponding actions for each token (Java code to be
executed when the token is recognized)

CS 412/413 Spring 2007 Introduction to Compilers 17

Example Specification File

Package Parse;
Import Error.LexicalError;
%%
digits = 0[[1-9][0-91*
letter = [A-Za-z]
identifier = {letter}({letter}|[0-9_])*
whitespace = [\ \t\n\r]+
%%
{whitespace} {/* discard */}
{digits} { return new
Token(INT, Integer.valueOf(yytext()); }
if” { return new Token(IF, null); }
“while” { return new Token(WHILE, null); }
{identifier} { return new Token(ID, yytext()); }
. { ErrorMsg.error(“illegal character”); }

CS 412/413 Spring 2007 Introduction to Compilers 18

Start States

Mechanism that specifies state in which to
start the execution of the DFA

Declare states in the second section

— %state STATE

Use states as prefixes of regular expressions
in the third section:

— <STATE> regex {action}

Set current state in the actions

— yybegin(STATE)

e There is a pre-defined initial state: YYINITIAL

CS 412/413 Spring 2007 Introduction to Compilers 19

%%

%state STRING

%%

<YYINITIAL> “if” { return new Token(IF, null); }
<YYINITIAL> “\"" { yybegin(STRING); ... }
<STRING> ™\"" { yybegin(YYINITIAL); ... }

Start States and REs

¢ The use of start states allows the lexer to
recognize more than regular expressions (or
DFAs)

— Reason: the lexer can jump across different states
in the semantic actions using yybegin(STATE)

¢ Example: nested comments

— Increment a global variable on open parentheses
and decrement it on close parentheses

— When the variable gets to zero, jump to YYINITIAL

— The global variable essentially models an infinite
number of states!

CS 412/413 Spring 2007 Introduction to Compilers 21

<STRING> . {..}
CS 412/413 Spring 2007 Introduction to Compilers 20
Conclusion

Regular expressions: concise way of
specifying tokens

Can convert RE to NFA, then to DFA, then to
minimized DFA

Use the minimized DFA to recognize tokens in
the input stream

Automate the process using lexical analyzer
generators

— Write regular expression descriptions of tokens

— Automatically get a lexical analyzer program which
identifies tokens from an input stream of
characters

CS 412/413 Spring 2007 Introduction to Compilers 22

