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Outline

• RE review
• Construction of lexing automaton

– DFAs, NFAs
– DFA simulation
– RE ⇒ NFA conversion
– NFA ⇒ DFA conversion
– (to be continued for set of prioritized REs)
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Concepts
• Tokens: values representing lexical units of a 

program
– May represent unique character strings (keyword, 

operator)
– May represent multiple strings (identifiers, numbers)

• Regular expressions (RE): concise descriptions 
of tokens
– Each regular expression R describes language L(R), 

a set of strings corresponding to a given class of 
tokens
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Regular Expressions
• If R and S are regular expressions, so are:

a for any character a
ε empty string
∅ the empty set
R|S (alternation: “R or S”)
RS (concatenation: “R followed by S”)
R* (Kleene closure: “zero or more R’s”)
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Regular Expression Extensions
• If R is a regular expressions, so are:

R? = ε | R (zero or one R)
R+ = RR* (one or more R’s)
(R) = R (no effect: grouping)
[abc] = a|b|c (any of the listed)
[a-e] = a|b|…| e (character ranges)
[^ab] = c|d|…

(anything but the listed chars)
name = R named abbreviation
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Automatic Lexer Generators

• Input: token spec
– list of regular expressions in priority order
– associated action for each RE (generates 

appropriate kind of token, other bookkeeping)

• Output: lexer program
– program that reads an input stream and breaks it 

up into tokens according to the REs (or reports 
lexical error -- “Unexpected character” )
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Example: JLex
%%
digits = 0|[1-9][0-9]*
letter = [A-Za-z]
identifier = {letter}({letter}|[0-9_])*
whitespace = [\ \t\n\r]+
%%
{whitespace} {/* discard */}
{digits} { return new Token(INT, Integer.parseInt(yytext()); }
”if” { return new Token(IF, yytext()); }
”while” { return new Token(WHILE, yytext()); }
…
{identifier} { return new Token(ID, yytext()); }
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• Given R ∈ RE and input string w, need 
a mechanism to determine if w ∈ L(R)

• Such a mechanism is called an acceptor

How To Use Regular Expressions

Input string w
(from the program)

R ∈ RE
(that describes a

token family)

?
Yes, if w is a token

No, if w not a token
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Acceptors
• Acceptor determines if an input string belongs 

to a language L

• Finite Automata are acceptors for languages 
described by regular expressions

Input 
String

Description
of language

Acceptor

w

L

Yes, if w ∈ L

No,  if w ∉ L
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Finite Automata
• Informally, finite automaton consist of:

– A finite set of states
– Transitions between states
– An initial state (start state)
– A set of final states (accepting states)

• Two kinds of finite automata:
– Deterministic finite automata (DFA): the transition 

from each state is uniquely determined by the 
current input character

– Non-deterministic finite automata (NFA): there 
may be multiple possible choices, and some 
“spontaneous” transitions without input
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DFA Example
• Finite automaton that accepts the strings in 

the language denoted by regular expression 
ab*a

– A graph

– A transition table

0 1 2
a

b

a

a b
0 1 Error
1 2 1
2 Error Error
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Simulating the DFA

trans_table[NSTATES][NCHARS]
accept_states[NSTATES] 
state = INITIAL

while (state != Error) {
c = input.read();
if (c == EOF) break;
state = trans_table[state][c];

}
return (state!=Error) && accept_states[state];

0 1 2
a

b

a

• Determine if the DFA accepts an input string 
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RE ⇒ Finite automaton?
• Can we build a finite automaton for every 

regular expression?

• Strategy: build the finite automaton 
inductively, based on the definition of regular 
expressions

a

a

ε ∅
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• Alternation R|S

• Concatenation: RS

RE ⇒ Finite automaton?

R automaton

S automaton

?

?

?

R automaton S automaton
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NFA Definition
• A non-deterministic finite automaton (NFA) is 

an automaton where:
– There may be ε-transitions (transitions that do not 

consume input characters)
– There may be multiple transitions from the same 

state on the same input character

ε

ε

a b

b a a

Example:

regexp?
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RE ⇒ NFA intuition

-?[0-9]+

ε

-
0-9

0-9

ε
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NFA construction (Thompson)

• NFA only needs one stop state (why?)
• Canonical NFA:

• Use this canonical form to inductively 
construct NFAs for regular expressions
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Inductive NFA Construction

RS
R S

R|S R

S

ε

ε ε

ε

R*
R

ε

ε

ε
ε

ε
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Inductive NFA Construction

RS
R S

R|S R

S

ε

ε ε

ε

R*
R

ε

ε

ε
ε
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DFA vs NFA
• DFA: action of automaton on each input 

symbol is fully determined
– obvious table-driven implementation

• NFA:
– automaton may have choice on each step
– automaton accepts a string if there is any 

way to make choices to arrive at accepting 
state / every path from start state to an 
accept state is a string accepted by 
automaton

– not obvious how to implement!
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Simulating an NFA

• Problem: how to execute NFA?
“strings accepted are those for which there is 
some corresponding path from start state to 
an accept state”

• Solution: search all paths in graph consistent 
with the string in parallel
– Keep track of subset of NFA states that search 

could be in after seeing string prefix
– “Multiple fingers” pointing to graph
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Example

• Input string: -23

• NFA states:
{0,1}
{1}
{2, 3}
{2, 3}

0 1

ε

-
2

0-9
3

0-9

ε
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NFA → DFA conversion
• Can convert NFA directly to DFA by same approach
• Create one DFA state for each distinct subset of 

NFA states that could arise
• States: {0,1}, {1}, {2, 3}

• Called the “subset construction”

0 1

ε

2
0-9

3

0-9

ε {0,1} {1}

{2,3}

-

0-90-9

0-9

-
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Algorithm
• For a set S of states in the NFA, compute                   
ε-closure(S) = set of states reachable from states in S 
by one or more ε-transitions

T = S
Repeat  T = T U {s | s’∈T, (s’,s) is ε-transition}
Until     T remains unchanged
ε-closure(S) = T

• For a set S of ε-closed states in the NFA, compute               
DFAedge(S,c) = the set of states reachable from states 
in S by transitions on symbol c and ε-transitions

DFAedge(S,c) = ε-closure( { s | s’∈S, (s’,s) is c-transition} )
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Algorithm
DFA-initial-state = ε-closure(NFA-initial-state)
Worklist = { DFA-initial-state }

While ( Worklist not empty )
Pick state S from Worklist
For each character c

S’ = DFAedge(S,c)
if  (S’ not in DFA states)

Add S’ to DFA states and worklist
Add an edge (S, S’) labeled c in DFA

For each DFA-state S
If S contains an NFA-final state

Mark S as DFA-final-state
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Putting the Pieces Together

RE ⇒ NFA
Conversion

NFA ⇒ DFA
Conversion

DFA
Simulation

Yes, if w ∈ L(R)

No,  if w ∉ L(R)
Input
String

Regular 
Expression R

w
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See Also (on web)
Regular Expression Matching Can Be Simple And Fast 

(but is slow in Java, Perl, PHP, Python, Ruby, ...),
Russ Cox, January 2007 


