
1

CS412/413

Introduction to Compilers
Tim Teitelbaum

Lecture 3: Finite Automata
26 Jan 07

CS 412/413 Spring 2007 Introduction to Compilers 2

Outline

• RE review
• Construction of lexing automaton

– DFAs, NFAs
– DFA simulation
– RE ⇒ NFA conversion
– NFA ⇒ DFA conversion
– (to be continued for set of prioritized REs)

CS 412/413 Spring 2007 Introduction to Compilers 3

Concepts
• Tokens: values representing lexical units of a

program
– May represent unique character strings (keyword,

operator)
– May represent multiple strings (identifiers, numbers)

• Regular expressions (RE): concise descriptions
of tokens
– Each regular expression R describes language L(R),

a set of strings corresponding to a given class of
tokens

CS 412/413 Spring 2007 Introduction to Compilers 4

Regular Expressions
• If R and S are regular expressions, so are:

a for any character a
ε empty string
∅ the empty set
R|S (alternation: “R or S”)
RS (concatenation: “R followed by S”)
R* (Kleene closure: “zero or more R’s”)

CS 412/413 Spring 2007 Introduction to Compilers 5

Regular Expression Extensions
• If R is a regular expressions, so are:

R? = ε | R (zero or one R)
R+ = RR* (one or more R’s)
(R) = R (no effect: grouping)
[abc] = a|b|c (any of the listed)
[a-e] = a|b|…| e (character ranges)
[^ab] = c|d|…

(anything but the listed chars)
name = R named abbreviation

CS 412/413 Spring 2007 Introduction to Compilers 6

Automatic Lexer Generators

• Input: token spec
– list of regular expressions in priority order
– associated action for each RE (generates

appropriate kind of token, other bookkeeping)

• Output: lexer program
– program that reads an input stream and breaks it

up into tokens according to the REs (or reports
lexical error -- “Unexpected character”)

2

CS 412/413 Spring 2007 Introduction to Compilers 7

Example: JLex
%%
digits = 0|[1-9][0-9]*
letter = [A-Za-z]
identifier = {letter}({letter}|[0-9_])*
whitespace = [\ \t\n\r]+
%%
{whitespace} {/* discard */}
{digits} { return new Token(INT, Integer.parseInt(yytext()); }
”if” { return new Token(IF, yytext()); }
”while” { return new Token(WHILE, yytext()); }
…
{identifier} { return new Token(ID, yytext()); }

CS 412/413 Spring 2007 Introduction to Compilers 8

• Given R ∈ RE and input string w, need
a mechanism to determine if w ∈ L(R)

• Such a mechanism is called an acceptor

How To Use Regular Expressions

Input string w
(from the program)

R ∈ RE
(that describes a

token family)

?
Yes, if w is a token

No, if w not a token

CS 412/413 Spring 2007 Introduction to Compilers 9

Acceptors
• Acceptor determines if an input string belongs

to a language L

• Finite Automata are acceptors for languages
described by regular expressions

Input
String

Description
of language

Acceptor

w

L

Yes, if w ∈ L

No, if w ∉ L

CS 412/413 Spring 2007 Introduction to Compilers 10

Finite Automata
• Informally, finite automaton consist of:

– A finite set of states
– Transitions between states
– An initial state (start state)
– A set of final states (accepting states)

• Two kinds of finite automata:
– Deterministic finite automata (DFA): the transition

from each state is uniquely determined by the
current input character

– Non-deterministic finite automata (NFA): there
may be multiple possible choices, and some
“spontaneous” transitions without input

CS 412/413 Spring 2007 Introduction to Compilers 11

DFA Example
• Finite automaton that accepts the strings in

the language denoted by regular expression
ab*a

– A graph

– A transition table

0 1 2
a

b

a

a b
0 1 Error
1 2 1
2 Error Error

CS 412/413 Spring 2007 Introduction to Compilers 12

Simulating the DFA

trans_table[NSTATES][NCHARS]
accept_states[NSTATES]
state = INITIAL

while (state != Error) {
c = input.read();
if (c == EOF) break;
state = trans_table[state][c];

}
return (state!=Error) && accept_states[state];

0 1 2
a

b

a

• Determine if the DFA accepts an input string

3

CS 412/413 Spring 2007 Introduction to Compilers 13

RE ⇒ Finite automaton?
• Can we build a finite automaton for every

regular expression?

• Strategy: build the finite automaton
inductively, based on the definition of regular
expressions

a

a

ε ∅

CS 412/413 Spring 2007 Introduction to Compilers 14

• Alternation R|S

• Concatenation: RS

RE ⇒ Finite automaton?

R automaton

S automaton

?

?

?

R automaton S automaton

CS 412/413 Spring 2007 Introduction to Compilers 15

NFA Definition
• A non-deterministic finite automaton (NFA) is

an automaton where:
– There may be ε-transitions (transitions that do not

consume input characters)
– There may be multiple transitions from the same

state on the same input character

ε

ε

a b

b a a

Example:

regexp?

CS 412/413 Spring 2007 Introduction to Compilers 16

RE ⇒ NFA intuition

-?[0-9]+

ε

-
0-9

0-9

ε

CS 412/413 Spring 2007 Introduction to Compilers 17

NFA construction (Thompson)

• NFA only needs one stop state (why?)
• Canonical NFA:

• Use this canonical form to inductively
construct NFAs for regular expressions

CS 412/413 Spring 2007 Introduction to Compilers 18

Inductive NFA Construction

RS
R S

R|S R

S

ε

ε ε

ε

R*
R

ε

ε

ε
ε

ε

4

CS 412/413 Spring 2007 Introduction to Compilers 19

Inductive NFA Construction

RS
R S

R|S R

S

ε

ε ε

ε

R*
R

ε

ε

ε
ε

CS 412/413 Spring 2007 Introduction to Compilers 20

DFA vs NFA
• DFA: action of automaton on each input

symbol is fully determined
– obvious table-driven implementation

• NFA:
– automaton may have choice on each step
– automaton accepts a string if there is any

way to make choices to arrive at accepting
state / every path from start state to an
accept state is a string accepted by
automaton

– not obvious how to implement!

CS 412/413 Spring 2007 Introduction to Compilers 21

Simulating an NFA

• Problem: how to execute NFA?
“strings accepted are those for which there is
some corresponding path from start state to
an accept state”

• Solution: search all paths in graph consistent
with the string in parallel
– Keep track of subset of NFA states that search

could be in after seeing string prefix
– “Multiple fingers” pointing to graph

CS 412/413 Spring 2007 Introduction to Compilers 22

Example

• Input string: -23

• NFA states:
{0,1}
{1}
{2, 3}
{2, 3}

0 1

ε

-
2

0-9
3

0-9

ε

CS 412/413 Spring 2007 Introduction to Compilers 23

NFA → DFA conversion
• Can convert NFA directly to DFA by same approach
• Create one DFA state for each distinct subset of

NFA states that could arise
• States: {0,1}, {1}, {2, 3}

• Called the “subset construction”

0 1

ε

2
0-9

3

0-9

ε {0,1} {1}

{2,3}

-

0-90-9

0-9

-

CS 412/413 Spring 2007 Introduction to Compilers 24

Algorithm
• For a set S of states in the NFA, compute
ε-closure(S) = set of states reachable from states in S
by one or more ε-transitions

T = S
Repeat T = T U {s | s’∈T, (s’,s) is ε-transition}
Until T remains unchanged
ε-closure(S) = T

• For a set S of ε-closed states in the NFA, compute
DFAedge(S,c) = the set of states reachable from states
in S by transitions on symbol c and ε-transitions

DFAedge(S,c) = ε-closure({ s | s’∈S, (s’,s) is c-transition})

5

CS 412/413 Spring 2007 Introduction to Compilers 25

Algorithm
DFA-initial-state = ε-closure(NFA-initial-state)
Worklist = { DFA-initial-state }

While (Worklist not empty)
Pick state S from Worklist
For each character c

S’ = DFAedge(S,c)
if (S’ not in DFA states)

Add S’ to DFA states and worklist
Add an edge (S, S’) labeled c in DFA

For each DFA-state S
If S contains an NFA-final state

Mark S as DFA-final-state

CS 412/413 Spring 2007 Introduction to Compilers 26

Putting the Pieces Together

RE ⇒ NFA
Conversion

NFA ⇒ DFA
Conversion

DFA
Simulation

Yes, if w ∈ L(R)

No, if w ∉ L(R)
Input
String

Regular
Expression R

w

CS 412/413 Spring 2007 Introduction to Compilers 27

See Also (on web)
Regular Expression Matching Can Be Simple And Fast

(but is slow in Java, Perl, PHP, Python, Ruby, ...),
Russ Cox, January 2007

