
1

CS412/413

Introduction to Compilers
Tim Teitelbaum

Lecture 2: Lexical Analysis
24 Jan 07

CS 412/413 Spring 2007 Introduction to Compilers 2

Outline

• Review compiler structure
• Compilation example

• What is lexical analysis?
• Writing a lexer
• Specifying tokens: regular expressions
• Writing a lexer generator

CS 412/413 Spring 2007 Introduction to Compilers 3

Simplified Compiler Structure

cmp $0, ecx
cmovz edx, ecx

Source code

Understand
source code

Generate
assembly code

Assembly code

if (b == 0) a = b;

Optimize

Intermediate
code

Intermediate
code

CS 412/413 Spring 2007 Introduction to Compilers 4

Simplified Front End Structure
Source code
(character stream)

Lexical Analysis
Syntax Analysis

Semantic Analysis

if (b == 0) a = b; Errors
(incorrect
program)

Correct program
(AST representation)

CS 412/413 Spring 2007 Introduction to Compilers 5

More Precise Front End Structure
Source code
(character stream)

Lexical Analysis
Syntax Analysis

Semantic Analysis

if (b == 0) a = b;

Correct program
(AST representation)

Intermediate Code
Generation

Intermediate code

Errors
(incorrect
program)

CS 412/413 Spring 2007 Introduction to Compilers 6

How It Works

Source code
(character stream)

Lexical Analysis

Syntax Analysis
(Parsing)

Token
stream

Abstract syntax
tree (AST)

Semantic Analysis

if (b == 0) a = b;

if (b) a = b ;0==

if
==

b 0
=

a b

if

==

int b int 0

=

int a
lvalue

int b

boolean
Decorated

AST

int

2

CS 412/413 Spring 2007 Introduction to Compilers 7

How It Works

Intermediate Code
Generation

Optimizations

if

==

int b int 0

=

int a
lvalue

int b

boolean int

t = (b ==0)
jump t, L
a = b
label L

t = (b ==0)
jump t, L
a = 0
label L

Intermediate
code

Intermediate
code

Decorated
AST

cmp $0,ecx
cmovz $0,[ebp+8]

Assembly
code

Machine Optimizations
and Code Generation

CS 412/413 Spring 2007 Introduction to Compilers 8

First Step: Lexical Analysis

Source code
(character stream)

Lexical Analysis

Token
stream

Semantic Analysis

if (b == 0) a = b;

if (b) a = b ;0==

Syntax Analysis

CS 412/413 Spring 2007 Introduction to Compilers 9

Tokens

• Identifiers: x y11 elsen _i00
• Keywords: if else while break
• Constants:

– Integer: 2 1000 -500 5L 0x777
– Floating-point: 2.0 0.00020 .02 1. 1e5 0.e-10
– String: ”x” ”He said, \”Are you?\”\n”
– Character: ’c’ ’\000’

• Symbols: + * { } ++ < << [] >=

• Whitespace (typically recognized and discarded):
– Comment: /** don’t change this **/
– Space: <space>
– Format characters: <newline> <return>

CS 412/413 Spring 2007 Introduction to Compilers 10

Ad-hoc Lexer
• Hand-write code to generate tokens
• How to read identifier tokens?

Token readIdentifier() {
String id = “”;
while (true) {

char c = input.read();
if (!identifierChar(c))

return new Token(ID, id, lineNumber);
id = id + String(c);

}
}

• Problems
– How to start?
– What to do with following character?
– How to avoid quadratic complexity of repeated concatenation?
– How to recognize keywords?

CS 412/413 Spring 2007 Introduction to Compilers 11

• Scan text one character at a time
• Use look-ahead character (next) to determine

what kind of token to read and when the
current token ends
char next;
…
while (identifierChar(next)) {

id = id + String(next);
next = input.read ();

}

Look-ahead Character

e l s e n

next
(lookahead)

CS 412/413 Spring 2007 Introduction to Compilers 12

Ad-hoc Lexer: Top-level Loop

class Lexer {
InputStream s;
char next;
Lexer(InputStream _s) { s = _s; next = s.read(); }
Token nextToken() {

if (identifierFirstChar(next))
return readIdentifier();

if (numericFirstChar(next))
return readNumber();

if (next == ‘\”’) return readStringConst();
…

}
}

3

CS 412/413 Spring 2007 Introduction to Compilers 13

Problems

• Don’t know what kind of token we are
going to read from seeing first
character
– if token begins with “i’’ is it an identifier?
– if token begins with “2” is it an integer

constant?
– interleaved tokenizer code hard to write

correctly, harder to maintain
– In general, unbounded lookahead may be

needed
CS 412/413 Spring 2007 Introduction to Compilers 14

Issues
• How to describe tokens unambiguously

2.e0 20.e-01 2.0000
“” “x” “\\” “\”\’”

• How to break up text into tokens
if (x == 0) a = x<<1;
if (x == 0) a = x<1;

• How to tokenize efficiently
– tokens may have similar prefixes
– want to look at each character ~1 time

CS 412/413 Spring 2007 Introduction to Compilers 15

Principled Approach

• Need a principled approach
– lexer generator that generates efficient

tokenizer automatically (e.g., lex, flex, JLex)
– a.k.a., scanner generator

• Approach
– Describe programming language’s tokens as

set of regular expressions
– Generate scanning automaton from that set

of regular expressions

CS 412/413 Spring 2007 Introduction to Compilers 16

Language Theory Review
• Let Σ be a finite set

– Σ called an alphabet
– a ∈ Σ called a symbol

• Σ* is the set of all finite strings
consisting of symbols from Σ

• A subset L ⊆ Σ* is called a language
• If L1 and L2 are languages, then L1 L2 is

the concatenation of L1 and L2, i.e., the
set of all pair-wise concatenations of
strings from L1 and L2, respectively.

CS 412/413 Spring 2007 Introduction to Compilers 17

Language Theory Review, ctd.
• Let L ⊆ Σ* be a language
• Then

– L0 = {}
– Ln+1 = L Ln for all n ≥ 0

• Examples
– if L = {a, b} then

• L1 = L = {a, b}
• L2 = {aa, ab, ba, bb}
• L3 = {aaa, aab, aba, aba, baa, bab, bba, bbb}
• …

CS 412/413 Spring 2007 Introduction to Compilers 18

Syntax of Regular Expressions
• Set of regular expressions (RE) over

alphabet Σ is defined inductively by
– Let a ∈ Σ and R, S ∈ RE. Then:

• a ∈ RE
• ε ∈ RE
• ∅ ∈ RE
• R|S ∈ RE
• RS ∈ RE
• R* ∈ RE

• In concrete syntactic form, precedence
rules, parentheses, and abbreviations

4

CS 412/413 Spring 2007 Introduction to Compilers 19

Semantics of Regular Expressions
• Regular expression T ∈ RE denotes the

language L(R) ⊆ Σ* given according to the
inductive structure of T:
– L(a) ={a} the string “a”
– L(ε) = {“”} the empty string
– L(∅) = {} the empty set
– L(R|S) = L(R) ∪ L(S) alternation
– L(RS) = L(R) L(S) concatenation
– L(R*) = {“”} ∪ L(R) ∪ L(R2) ∪ L(R3) ∪ L(R4) ∪ …

Kleene closure

CS 412/413 Spring 2007 Introduction to Compilers 20

Simple Examples
• L(R) = the “language” defined by R

– L(abc) = { abc }
– L(hello|goodbye) = {hello, goodbye}
– L(1(0|1)*) = all non-zero binary numerals

beginning with 1

CS 412/413 Spring 2007 Introduction to Compilers 21

Convienent RE Shorthand
R+ one or more strings from L(R): R(R*)
R? optional R: (R|ε)
[abce] one of the listed characters: (a|b|c|e)
[a-z] one character from this range:

(a|b|c|d|e|…|y|z)
[^ab] anything but one of the listed chars
[^a-z] one character not from this range
”abc” the string “abc”
\(the character ’(’
. . .
id=re named non-recursive regular expressions

CS 412/413 Spring 2007 Introduction to Compilers 22

More Examples
Regular Expression R Strings in L(R)

digit = [0-9] “0” “1” “2” “3” …
posint = digit+ “8” “412” …
int = -? posint “-42” “1024” …
real = int ((. posint)?) “-1.56” “12” “1.0”

= (-|ε)([0-9]+)((. [0-9]+)|ε)
[a-zA-Z_][a-zA-Z0-9_]* C identifiers
else the keyword “else”

CS 412/413 Spring 2007 Introduction to Compilers 23

How To Break Up Text

elsen = 0;

• REs alone not enough: need rule for
disambiguation

• Most languages: longest matching token wins
• Ties in length resolved by prioritizing tokens
• Lexer definition = RE’s + priorities + longest-

matching-token rule + token representation

else n =

elsen =

0

0

1

2

CS 412/413 Spring 2007 Introduction to Compilers 24

Historical Anomalies
• PL/I

– Keywords not reserved
• IF IF THEN THEN ELSE ELSE;

• FORTRAN
– Whitespace stripped out prior to scanning

• DO 123 I = 1
• DO 123 I = 1 , 2

• By and large, modern language design
intentionally makes scanning easier

5

CS 412/413 Spring 2007 Introduction to Compilers 25

Summary
• Lexical analyzer converts a text stream to

tokens
• Ad-hoc lexers hard to get right, maintain
• For most languages, legal tokens are

conveniently and precisely defined using
regular expressions

• Lexer generators generate lexer automaton
automatically from token RE’s, precedence

• Next lecture: how lexer generators work

CS 412/413 Spring 2007 Introduction to Compilers 26

Reading
• IC Language spec
• JLEX manual
• CVS manual
• Links on course web home page

Groups
• If you haven’t got a full group lined up,

hang around and talk to prospective
group members today

