CS412/413

Introduction to Compilers
Tim Teitelbaum

Lecture 2: Lexical Analysis
24 Jan 07

Outline

* Review compiler structure
¢ Compilation example

e What is lexical analysis?

o Writing a lexer

» Specifying tokens: regular expressions
o Writing a lexer generator

CS 412/413 Spring 2007 Introduction to Compilers

Simplified Compiler Structure

Source code |
if b==0)a=b; Understand
source code

Intermediate
code

Optimize

Intermediate
code

Generate
Assembly code
assembly code
cmp $0, ecx

cmovz edx, ecxe— |

CS 412/413 Spring 2007 Introduction to Compilers

Simplified Front End Structure

Source code
(character stream) 3

if (b==0)a=b; Lexical Analysis Errors
Syntax Analysis —— (incorrect
Semantic Analysis program)

Correct program
(AST representation)

CS 412/413 Spring 2007 Introduction to Compilers

More Precise Front End Structure

Source code
-
(character stream)

if(b==0)a=b; Lexical Analysis Errors
Syntax Analysis — (incorrect
Semantic Analysis program)

Correct program
(AST representation)

Intermediate Code
Generation

Intermediate code

CS 412/413 Spring 2007 Introduction to Compilers

How It Works

Source code

if(b==0)a=b;
(character stream)
Lexical Analysis

Token - J [,
sweam LFL([p[==[0D)[a]=[b[;]
_ Syntax Analysis
A (Parsing)
Abstract syntax /N SN]
tree (AST) b0 a b
U
e boolean. =/| N Semantic Analysis
AST int b/ ;\E 0 int g\mt b

Ivalue

CS 412/413 Spring 2007 Introduction to Compilers 6

How It Works

if
Decorated boolean::/ _mt

AST . NI\
ieb”int0 inta intb | Intermediate Code
Generation
. t=(b==0)
Intermediate Jumpt, L oo
code a=b
label L Optimizations
t=(b==0)

Intermediate jumpt, L =~ -----mmmmm---oo-
code a=0

label L Machine Optimizations
and Code Generation
Assembly cmp $0,ecx

code cmovz $0,[ebp+8] «—I

CS 412/413 Spring 2007 Introduction to Compilers

First Step: Lexical Analysis

Source code if (b==0)a=b;
(character stream)

Lexical Analysis

Token - —_ N
Token [T(fo[==[o[o o[=[o]
CS 412/413 Spring 2007 Introduction to Compilers

Tokens

Identifiers: x yl11 elsen _i00
Keywords: if else while break

e Constants:

— Integer: 2 1000 -500 5L 0x777

— Floating-point: 2.0 0.00020 .02 1. 1e5 0.e-10
— String: "x” "He said, \"Are you?\"\n"

— Character: 'c” "\000’

Symbols: + * { } ++ < << [] >=

Whitespace (typically recognized and discarded):
— Comment: /** don't change this **/

— Space: <space>

— Format characters: <newline> <return>

CS 412/413 Spring 2007 Introduction to Compilers

Ad-hoc Lexer

¢ Hand-write code to generate tokens
¢ How to read identifier tokens?
Token readIdentifier() {
String id ="";
while (true) {
char ¢ = input.read();
if (lidentifierChar(c))
return new Token(ID, id, lineNumber);
id = id + String(c);
}

¢ Problems
— How to start?
— What to do with following character?
— How to avoid quadratic complexity of repeated concatenation?
— How to recognize keywords?

CS 412/413 Spring 2007 Introduction to Compilers 10

Look-ahead Character

e Scan text one character at a time

¢ Use look-ahead character (next) to determine
what kind of token to read and when the
current token ends

char next; EHEEIH
while (identifierChar(next)) {]

id = id + String(next); next

next = input.read (); (lookahead)
)

CS 412/413 Spring 2007 Introduction to Compilers

Ad-hoc Lexer: Top-level Loop

class Lexer {
InputStream s;
char next;
Lexer(InputStream _s) { s = _s; next = s.read(); }
Token nextToken() {
if (identifierFirstChar(next))
return readIdentifier();
if (numericFirstChar(next))
return readNumber();
if (next =="\"") return readStringConst();

CS 412/413 Spring 2007 Introduction to Compilers

Problems

» Don't know what kind of token we are
going to read from seeing first
character
— if token begins with “i"” is it an identifier?
— if token begins with “2” is it an integer

constant?
— interleaved tokenizer code hard to write
correctly, harder to maintain

— In general, unbounded lookahead may be
needed

werr
|

CS 412/413 Spring 2007 Introduction to Compilers 13

Issues

¢ How to describe tokens unambiguously
2.e0 20.e-01 2.0000
e "¢ N

¢ How to break up text into tokens
if (x ==0) a = x<<1;
if (x==0)a=x<1;

* How to tokenize efficiently
— tokens may have similar prefixes
— want to look at each character ~1 time

CS 412/413 Spring 2007 Introduction to Compilers 14

Principled Approach

* Need a principled approach

— lexer generator that generates efficient
tokenizer automatically (e.g., lex, flex, JLex)

—a.k.a., scanner generator
e Approach

— Describe programming language’s tokens as
set of regular expressions

— Generate scanning automaton from that set
of regular expressions

CS 412/413 Spring 2007 Introduction to Compilers 15

Language Theory Review

e Let T be a finite set
— X called an alphabet
—a e Z called a symbol

e 3* is the set of all finite strings
consisting of symbols from =

e A subset L ¢ =* is called a language

¢ If L, and L, are languages, then L, L, is
the concatenation of L, and L,, i.e., the
set of all pair-wise concatenations of
strings from L, and L,, respectively.

CS 412/413 Spring 2007 Introduction to Compilers 16

Language Theory Review, ctd.

e Let L < =* be a language

e Then
- |_O = {}
—L+l=LLn foralln>0
e Examples
—if L ={a, b} then
ell=L={a b}

e L2 = {aa, ab, ba, bb}
e |3 = {aaa, aab, aba, aba, baa, bab, bba, bbb}

CS 412/413 Spring 2007 Introduction to Compilers 17

Syntax of Regular Expressions

o Set of regular expressions (RE) over
alphabet T is defined inductively by
—LetaeXandR,S € RE. Then:

eaecRE
ec e RE
e eRE
*R|S € RE
*RS e RE
o R* ¢ RE

¢ In concrete syntactic form, precedence

rules, parentheses, and abbreviations

CS 412/413 Spring 2007 Introduction to Compilers 18

Semantics of Regular Expressions

¢ Regular expression T e RE denotes the
language L(R) < =* given according to the
inductive structure of T:

- L(a) ={a} the string “a”
- L) ={"" the empty string
-L@)={ the empty set

- L(R|S) = L(R) U L(S) alternation

- L(RS) = L(R) L(S) concatenation

-LR*) = " ULR)ULR)ULR)ULRY U ...
Kleene closure

CS 412/413 Spring 2007 Introduction to Compilers 19

Simple Examples

¢ L(R) = the “language” defined by R
—L(abc)={abc}
— L(hello|goodbye) = {hello, goodbye}

— L(1(0[1)*) = all non-zero binary numerals
beginning with 1

CS 412/413 Spring 2007 Introduction to Compilers

20

Convienent RE Shorthand

R* one or more strings from L(R): R(R*)

R? optional R: (R|€)

[abce] one of the listed characters: (alb|c|e)

[a-z] one character from this range:
(alblc|d]e]...ly|z)

[~ab] anything but one of the listed chars

[~a-z] one character not from this range

"abc” the string “abc”

\(the character ‘("

id=re named non-recursive regular expressions

CS 412/413 Spring 2007 Introduction to Compilers 21

More Examples

Regular Expression R Strings in L(R)

digit = [0-9] wgr wpEnprnge
posint = digit+ “8""412" ...
int = -? posint "-42""1024" ...

real = int ((. posint)?) “-1.56""12""1.0"
= (-[e)([0-91+)((. [0-9]+)]¢)

[a-zA-Z_][a-zA-Z0-9_]* C identifiers

else the keyword “else”

CS 412/413 Spring 2007 Introduction to Compilers

22

How To Break Up Text

elsen = 0; 1 [else[n]=]o0]
2 [etsen] o]

¢ REs alone not enough: need rule for
disambiguation

Most languages: longest matching token wins
 Ties in length resolved by prioritizing tokens

o Lexer definition = RE’s + priorities + longest-
matching-token rule + token representation

CS 412/413 Spring 2007 Introduction to Compilers 23

Historical Anomalies

e PL/I
— Keywords not reserved
« IF IF THEN THEN ELSE ELSE;

e FORTRAN
— Whitespace stripped out prior to scanning
eDO1231=1

eDO123I=1 , 2

¢ By and large, modern language design
intentionally makes scanning easier

CS 412/413 Spring 2007 Introduction to Compilers

24

Summary

Lexical analyzer converts a text stream to
tokens

Ad-hoc lexers hard to get right, maintain

For most languages, legal tokens are
conveniently and precisely defined using
regular expressions

Lexer generators generate lexer automaton
automatically from token RE’s, precedence

Next lecture: how lexer generators work

CS 412/413 Spring 2007 Introduction to Compilers 25

Reading

¢ IC Language spec

e JLEX manual

¢ CVS manual

¢ Links on course web home page

Groups

e If you haven't got a full group lined up,
hang around and talk to prospective
group members today

CS 412/413 Spring 2007 Introduction to Compilers 26

