
CS412 Homework 2 Due: 19 February 2007

1. Consider the following grammar:

S → a S b S | b S a S | ε

(a) Show that the grammar is ambiguous by constructing two different rightmost derivations for the
string abaabb.

(b) Construct the corresponding parse trees for this string.

(c) Write an unambiguous grammar that describes the same language.

2. Consider the following grammar:

S → B C z
B → x B | B y | ε
C → u v | u | ε

(a) Calculate nullable, FIRST, and FOLLOW sets.

(b) Construct the LL(1) parsing table and give evidence that this grammar is not LL(1).

(c) Give an LL(1) grammar which accepts the same language and build the LL(1) parsing table for
that grammar.

3. Consider a simple grammar for pointer expressions in C, consisting of pointer dereference expressions,
address-of expressions, assignments, and field accesses:

E → *E | &E | E = E | E -> E | id

This is an ambiguous grammar. We would like to write an unambiguous grammar for the same
language, such that field accesses E -> E have higher precedence than dereferences and address-of
expressions, and all of these have higher precedence than assignments.

(a) Write an LL(1) grammar which accepts the same language and has the desired operator prece-
dence. Show the LL(1) parsing table for this grammar.

(b) Write an LR(1) grammar which accepts the same language, respects the desired operator prece-
dence, and is such that assignments are right-associative, and field accesses are left-associative.

(c) Write the parse tree for the expression * * a -> b -> c = & * d using the LR(1) grammar;

(d) One problem with the grammar above is that is models a superset of the valid C expressions. For
instance, &a = b -> *c is an invalid expression. We therefore impose the following conditions:

• only a location can occur on the right-hand side of an assignment, where a location is either
a dereference or an identifier;

• only a location can occur in the address-of construct;
• the address-of expression can only occur in dereferences or on the right side of an assignment;
• the expression in the right-hand side of a field access must be an identifier.

Write a LR(1) grammar which precisely accepts this language and has the desired precedence and
associativity of operators.

4. Consider the following grammar:

E → id | id (E) | E + id

1

(a) Build the LR(0) automaton for this grammar.

(b) Is this an LR(0) grammar? Give evidence.

(c) Is this an SLR grammar? Give evidence.

(d) Is this an LR(1) grammar? Give evidence.

5. Consider the grammar of matched parentheses:

S → A $
A → (A) A | ε

(a) Construct the LR(1) automaton.

(b) Build the LR(1) parsing table to show that the grammar is LR(1).

(c) Is the grammar LR(0)? Justify your answer.

2

