tic Heap Analysis
CS412

» Current state-of-the-art in compilers:
- : « Error checking limited to type-checking
Introduction to Compilers

* No support for checking for leaks, dangling refs,
double frees

Radu Rugina
¢ Verification tools:

: * E.g., theorem-provers, model-checkrs
Lecture 38: Shape Analysis * Precise, sound verification via shape analysis
05 May 06 » Expensive, limited to verifying small programs

Shape Analysis

Why Is It Important?

Shape analysis = static analysis of heap data structures Many potential applications:

Can automatically determine that a program builds an — Verification: check that the program indeed builds the
maintains an unshared and cycle-free heap structure SIETB [supposed to

= E.g, “your program builds a tree, not a graph” « Easier to reason about trees than about graphs

— Or “At this point, the list is acyclic & unshared” — Error detection: find memory errors

— Optimizations: automatic parallelization for tree structures
i I I o

— Memory management: enable deallocation of objects at
compite=time
YES

Why Is It Difficult? Reference Count Invariants

Express heap shapes using reference counting:

Reason 1:. Unbounded number Qf |.1ea.p cells — Heap reference count < 1

B NOYIeX'Cal e 9 e Wity ||fet|mesv — Distinguish trees from graphs; detect cycles or sharing
= Think “unbounded numbers of global variables” = — —

— Invariant indicates no aliasing

Reason 2: Destructive updates

— Structure invariants temporarily invalidated heap heap
Reason 3: Inter-procedural interactions, recursion

— Inter-procedural reasoning is difficult and expensive

— Main scalability obstacle

Maintaining Invariants

List vewap(List) { E T B T

List *y, *t;
if (x != NULL &%
x->next != NULL) {

return x; ﬁ i E =

How Shape Analysis Works

* Shape analysis is inherently a dataflow analysis
+ Come up-with-a finite_heap-abstraction
* Analyze each statement with that abstraction

Heap Heap
Abstraction Abstraction
Before After

Example

A-concrete list:

struct list {
int—d;
struct list *n;
} xx, *y;

Breaking Invarian

List *swap(List *x) {
List *y, *t;
if (x != NULL &%
x->next != NULL) {

return x;

The Dataflow Facts

Abstract each heap cell separately

— Local reasoning: analyze heap cells one at a time
— Easier to build efficient analysis algorithms

Configuration: (RC, H, M)

— Abstraction of one heap cell

— RC = reference counts from variables-and fields

— H = set of expressions that reference the cell (hit)

— M = expressions that don't reference the cell (miss)
—Entire-heap—finite set-of-independent-configurations

Example

A-concrete list:

ﬂﬂ%ﬁﬂﬂﬂ

Abstraction:

Example Example

A-concrete list: A-concrete list:

ﬂﬂ%ﬁﬂm ﬂﬂ%ﬁﬂm

Abstraction: Abstraction:
=, 8, 8

(y'n!, {x->n}, @)

Example Example

A concrete list: A concrete list:

ﬂﬂeﬁﬂﬂﬂ ﬂﬂeﬁﬂﬂﬂ

Abstraction: Abstraction:
g, 8) g, 8)

(yn', {x->n}, @) (yn', {x->n}, @)
(n!, g, {x->n}) (n!, g, {x->n})

Example

A concrete list: A cyclic list:

ﬂﬂ%ﬁﬂﬂﬂ

Abstraction: Abstraction:
&', ¢, @) &', 4, 8)

(yint, {x=>n};, @) Gyins—{x=>n}—¢)
(n!, ¢, {x—>n}) (n!, ¢, {x—>n})

Example

A cyclic list:

Abstraction:
=, 8,)

(yint, {x=>n};, @)
(n!, ¢, {x—>n})
(2, g, {x->n})

Analyzing List Reversal

List *reverse(List *x) {

Eist*t—%y;
y = NULL; Verify that:

while (x != NULL) { returned list y is acyclic
t = x->n; if input list x is acyclic
x->n = y;
== Listxis-acyclic:
== &' ¢, @
b @', g, »)
return y;

bz

Loop Body Analysis

Local reasoning:

No references from n,t

State remains unchanged

Example

A cyclic list:

Abstraction:
=, 8, 8

(yint, {x=>n};, @)
(n!, ¢, {x—>n})
(?, ¢, {x->n})

Loop Body Analysis

Loop Body Analysis

Local reasoning:

x->n in region L
t in region T

No references from L, T

State remains unchanged

Loop Body Analysis

Local reasoning:

No references from y,n

State remains unchanged

Loop Body Analysis

Local reasoning:

t misses cell
x hits cell

Remove reference from x

Loop Body Analysis

Loop Body Analysis

Local reasoning:

x hits cell
y misses cell

Add reference from y

Loop Body Analysis

Loop Body Analysis

Local reasoning:

t misses cell

Don’t know if x->n hits
or misses cell...

Loop Body Analysis Loop Body Analysis

Local reasoning: Local reasoning:
t misses cell y misses cell
x->n hits cell

Don’t know if x->n hits
or misses cell... Remove reference from n

Bifurcate and analyze
each casel

Loop Body Analysis Loop Body Analysis

Local reasoning:

y misses cell
x->n misses cell

State remains unchanged

Analysis Result Analysis Result

List *reverse(List *x) { List *reverse(List *x) {

List *t, xy; Eist«t—%vy;
y = NULL; * y = NULL; *
while (x != NULL) { while (x != NULL) {

t = x->next; t = x->next;

x=>next = y; x=>next = y;

return y; return y;

Property Verified Cyclic Input

List *reverse(List *x) {
List *t, xy;

y = NULL; Acyclic input =
while (x != NULL) {

t = x->next;

|

x=>next = y; Treverse

EE=75
¥
return y;

Acyclic output

Cyclic Input Cyclic Input

e e

I I

reverse reverse

Ay

Analysis:

Initialization Inter-Procedural Analysis

+Context-sensitive-analysis

¢ Procedure summaries: map each input configuration set

¢ Inject a new configuration at each malloc: ! |
of corresponding output configurations

— After: x = malloc(..)
— Create: (x!, 4, #)

e
. —— foo() — ..

¢ Then track the new configuration

— Bifurcate when necessary output

Inter-Procedural Analysis

« Efficient: reuse previous analyses of functions Verify

— Match individual configurations, not entire heap heap shapes
abstractions
— Works even if there is only partial overlap
. Optimize heap
: Shape Analysis
Dataflow info at Dataflow info at
a call site a differ:

Detect
heap errors

Application 1 Application 2

Check that acyclic shape is Verify + For garbage collected languages (e.g., Java)
maintained heap shapes Static reclamation of heap objects

— Compile-time program transformation
— Insert “free” statements

Smgly linked lists = Desirable-for real-time-and-embedded Optimize h
— Handles standard list manipulations: systems ptimize heap

insert, append, swap, reverse, management
insertion_sort, quicksort + Implementation:
— Reduces memory watermark by 50%

DOUb|y linked lists —Low run-time overhead (2% on average)

— Does not identify structural
invariants

Application 3 Application 3

For languages with explicit de-allocation (e.g., C)
Extend configurations: (RC, H, M, F) + Bug finding tool
— F = “freed” flag

Dangling pointer access *e if: ¢ Analyzed ssh, ss1, binutils

— ¢ may hit a configuration with F = true Size per app.: 18 to 25 KLOC
— Same for double free's Analysis time:

Alloc sites: 197 (7% cut off)
Warnings: 96

Leaks found: 38

Memory leak if:
— A configuration has all reference counts zero Detect Detect

= And-F flag is false heap errors heap errors

Summary

¢ New approach to static heap analysis

— Local reasoning about heap cells

¢ Applications:
— Verification of heap shapes

Analyze manipulations of recursive structures

Finding heap-related bugs in larger programs
Memory management transformations

