CS412/413

Introduction to Compilers
Radu Rugina

Lecture 36: Linking and Loading
01 May 06

Outline

* Static linking
— Object files
— Symbol resolution
— Relocation

e Libraries
— Shared libraries

— Dynamically linked libraries

* Book: “Linkers and Loaders”, by J. Levine

€S 412/413 Spring 2006 Introduction to Compilers

Big Picture

* Output of compiler is a set of ‘ source file ‘ ‘ source file ‘
assembly/object files

— Not executable compiler

— May refer to external
symbols (variables, ‘ asm. file ‘ ‘ asm. file ‘
functions, etc.)

assembler l

— Each object file has its own

address space ‘ object file ‘ ‘ object file ‘

e Linker joins together object

files into one executable file executable

e Loader brings program in
memory and executes it

loader

CS 412/413 Spring 2006 Introduction to Compilers 3

Main Issues

e Symbol resolution

— May have in one module references to external symbols
from another module

— Linker fixes such references when combining modules

¢ Relocation

— Symbols may have different addresses in the final
executable (they have been relocated)

— Linker must fix references to relocated symbols
— Loader may also relocate symbols

* Program loading
— Bring the program from disk to memory
— May require setting up virtual memory

CS 412/413 Spring 2006 Introduction to Compilers

Symbol Resolution

extern int foo(int x);
source extern int n;
code
foo(n);
assembly | Push -
de call _foo
co add $4, Y%esp
object ££]35[00]00]00700]] 1o be filled in
code 8[00]00]00]00 by linker
83| c4 |04
CS 412/413 Spring 2006 Introduction to Compilers 5

Executable Code

00401044 <_bar>:

401044: 55 push %ebp

401045: 89 e5 mov ‘%esp, %ebp
401047: £f 35 08 20 40 00 pushl 0x402008
401044: e8 le 00 00 00 call 401070 <_foo>
401052: 83 c4 04 add $0x04, %esp
401055: 89 ec mov ‘%ebp, kesp
401057: 5d pop ‘%ebp

401058: c3 ret

00401070 <_foo>:
401070 55 push %ebp
401071: 89 e5 mov ‘%hesp, hebp

00402008 <_n>:
402008: 64 00 00 00

€S 412/413 Spring 2006 Introduction to Compilers 6

Relocation Problem

* Object files have separate address spaces
* Need to combine them into an executable with a single
(linear) address space

¢ Relocation = compute new addresses in the new address
space (add a relocation constant)

e Example: file 1 file2
extern int foo(int x); int n = 100;
extern int n; int foo(int i) {

return n+i;

€S 412/413 Spring 2006 Introduction to Compilers

Relocation Example
e Object file:

00000000 <_foo>:

3: 8b 45 08 mo!

v 0x8(%ebp) , eax
6: 8b 0d 04 00 00 00 mov 0x4,%ecx
c: 8d 14 01 lea (hecx,%eax,1),%edx

00000004 <_n>:
4: 64 00 00 00

e Executable file:

00401070 <_foo>:

40107b: 8b 45 08 mov 0x8(%ebp) ,%eax

40107e: 8b 0d 08 20 40 00 mov 0x402008,%ecx
401084: 8d 14 01 lea (%ecx,%eax,1),%edx

00402008 <_n>:

402008: 64 00 00 00
€S 412)413 Spring 2000 Trtroduction to Complers 3

Unresolved Refs vs. Relocation

e Similar problems: have to compute new address in the resulting
executable file

* Several differences

* External (unresolved) symbols:
— Space for symbols allocated in other files
— Don't have any address before linking

* Relocated symbols:
— Space for symbols allocated in current file
— Have a local address for the symbol
— Don'’t have absolute addresses
— Don'’t need relocation if we use relative addresses

CS 412/413 Spring 2006 Introduction to Compilers

Object File Structure

* Object file contains various

- sections
‘ file header o Text section contains the
text section: unresolved, comp|.led code with some
relocatable machine code pa_t.ch!ng needed
« Initialized data: need to
‘ initialized data know initial values
* Uninitialized data: only need
symbol table .
; to know total size of data
(imported and
ted symbols) Segment
expor Y * Points to places in text and
‘ relocation info data section that need fix-up
CS 412/413 Spring 2006 Introduction to Compilers 10

Action of Linker

fl.o

object files executable file
textl
initl f2.0 a.exe
syml | | text3 | init3 t
rell init3 init2 data
sym3 initl
po [ym3|) t
text2 rel3 text3
i text2 code
init2 textl .
sym?2
rel3
CS 412/413 Spring 2006 Introduction to Compilers 1

Two-Pass Linking

* Usually need two passes to resolve external references and to
perform relocation

e Pass 1: read all modules and construct:
— Table with modules names and lengths

— Global symbol table: all unresolved references (symbols
used, but not defined by a module) and entry points
(symbols defined by a module)

e Pass 2: combine modules
— Compute relocation constants
— Perform relocation
— Resolve external references

€S 412/413 Spring 2006 Introduction to Compilers 12

Executable File Structure

e Same as object file, but code
is ready to be executed as-is ‘ file header

* Pages of code and data
brought in lazily from
text and data section as
needed: rapid start-up \ initialized data |

text section: execution-
ready machine code

* Symbols allow debugging

e Text section shared across ‘ optional: symbol table ‘

Executing Programs

* Multiple copies of program share code (text), have own
data

¢ Data appears at same virtual address in every process

physical virtual

|_notepad data 3 | |_notepad data 3 |

notepad code

heap data

notepad data 2 [notepad data 2 | o dara |

notepad code code
| notepad datal | |_notepad data 1 |

note, aclddatadl notepad data 1 stack data

notepad code

P notepad code

€S 412/413 Spring 2006 Introduction to Compilers 14

processes
CS 412/413 Spring 2006 Introduction to Compilers 13
File Formats
e Unix:

— a.out format

— COFF: Common Object File Format

— ELF: Executable and Linking Format

— All support both executable and object files

¢ Windows:
— COM, EXE: executable formats

— PE: Microsoft Portable Executable format
¢ For Windows NT, adapted from COFF

CS 412/413 Spring 2006 Introduction to Compilers 15

Libraries

e Library = collection of object files
e Linker adds all object files necessary to resolve undefined
references in explicitly named files
* Object files, libraries searched in user-specified order for
external references
Unix linker: Id
1d main.o foo.o /usr/lib/X11.a /usr/lib/libc.a
Microsoft linker:link
link main.obj foo.obj kernel32.1lib user32.1ib ...
* Index over all object files in library for rapid searching
Unix: ranlib

ranlib mylib.a

CS 412/413 Spring 2006 Introduction to Compilers 16

Shared Libraries

* Problem: libraries take up a lot of memory when linked into
many running applications

* Solution: shared libraries

Physical memory

ts [Tibe

cat | _libe libc

i X11
emacs libc
X11
xterm libc
X11

€S 412/413 Spring 2006 Introduction to Compilers 17

Shared Libraries

e Executable file refers to, does not contain library code; library
code brought in the address space when the program is loaded

e Library compiled at fixed address, far away from the application
(e.g. Linux: hex 60000000, BSD a0000000)

* Link program against stub library (no code, data)

* Shared library uses a jump table: client code jumps to jump table
and follows indirection (useful for library updates)

Library jump table

program:
scanf: jmp real_scanf

call printf printf: jmp real_ printf

putc: jmp real_putc

€S 412/413 Spring 2006 Introduction to Compilers 18

Intra-Library Calls

e Problem: shared libraries may depend on external symbols
(even symbols within the shared library); different
applications may have different linkage:

1d -o progl main.o /usr/lib/libc.a
1d -o prog2 main.o mymalloc.o /usr/lib/libc.a

¢ If routine in libc.a calls malloc(), for progl should get
standard version; for prog2, version in mymalloc.o

* Calls to external symbols are made through global tables
unique to each program

€S 412/413 Spring 2006 Introduction to Compilers 19

Malloc Example

progl Library stub:

prog2

main.o Global table main.o

_— malloc_entry:
malloc() ’_7 '\ > mallocO)

Y
Shared 1ib (libc)

strdup: jmp ...

malloc: jmp ... mymalloc.o:

real_strdup:
malloc()

> real_malloc:

€S 412/413 Spring 2006 Introduction to Compilers 20

Dynamic Linking

* |dea: link shared libraries when loading the program or
at run-time
— Easier to create
— Easier to update
— Programs can load and unload routines at run-time

e Drawback: loading-time or run-time overhead

CS 412/413 Spring 2006 Introduction to Compilers 21

Dynamic Shared Objects

* Unix systems: Code is typically compiled as a dynamic shared
object (DSO), a relocatable shared library

e Shared libraries in UNIX use the ELF format, which supports
Position-Independent Code (PIC)

— Program can determine its current address
— Add constant offset to access local data

— If data located in a different library, use indirection through a
Global Offset Table (GOT).

— Address of GOT usually computed and stored in a register at
the beginning of each procedure

CS 412/413 Spring 2006 Introduction to Compilers 22

Dynamic Shared Objects

* For calls to methods in shared libraries, uses procedure linkage
tables (PLT) — same as GOT, but with entries for functions.

— Entries represent pointers to functions from the shared library
that may be invoked

— The dynamic linker fills the PLT lazily: it fills in the entry for a
function the first time that function is invoked

— Subsequent calls just use the function pointer stored in the
PLT

€S 412/413 Spring 2006 Introduction to Compilers 23

Cost of DSOs

* Assume %ebx contains PLT/GOT address
» Call to function f:
call *f_offset (Jebx)
* Global variable accesses:
mov v_offset(%ebx), %eax
mov (%eax), %eax
* Calling global functions = calling methods

e Accessing global variables is more expensive than accessing local
variables

* Most computer benchmarks run w/o DSOs!

€S 412/413 Spring 2006 Introduction to Compilers 2

Dynamic Linking
¢ DSOs can be linked dynamically into a running program

* Implicit dynamic linking: when setting up global tables, shared
libraries are automatically loaded if necessary (even lazily),
symbols looked up & global tables created.

* Explicit dynamic linking: application can choose how to extend
its own functionality

— Unix example:

— h = dlopen(filename) loads an object file into the
memory, if not already loaded;

— p = dlsym(h, name) queries for symbols in the library

€S 412/413 Spring 2006 Introduction to Compilers 25

