CS412/413

Introduction to Compilers
Radu Rugina

Lecture 32: Instruction Selection
17 Apr 06

Instruction Selection

1. Translate three-address code into DAG structure

2. Then find a good tiling of the DAG
- disjoint set of tiles that cover the DAG
- Maximal munch algorithm
- Dynamic programming algorithm

€S 412/413 Spring 2006 Introduction to Compilers 2

Tiling
Goal: find a good covering of DAG with tiles
Issue: need to know what variables are in registers
Assume abstract assembly:
— Machine with infinite number of registers

— Temporary/local variables stored in registers
— Parameters/heap variables: use memory accesses

CS 412/413 Spring 2006 Introduction to Compilers

Example Tiling

e Consider the instruction a = a + i
a = local variable
i = parameter

* Need new temporary registers
between tiles (unless operand node is
labeled with temporary)

¢ Result code:
mov %ebp, t0

sub $20, tO
mov (t0), ti
add t1, a

CS 412/413 Spring 2006 Introduction to Compilers 4

Problems

Classes of registers

— Registers may have specific purposes

— Example: Pentium multiply instruction
- multiply register eax by contents of another register
- store result in eax (low 32 bits) and edx (high 32 bits)
- need extra instructions to move values into eax

Two-address machine instructions
— Three-address low-level code
— Need multiple machine instructions for a single tile

CISC versus RISC
— Complex instruction sets: multiple possible tilings

€S 412/413 Spring 2006 Introduction to Compilers

Pentium ISA

e Pentium: two-address CISC architecture

e Multiple addressing modes: source operands may be
— Immediate value: imm
— Register: reg
— Indirect address: [reg], [imm], [reg-+imm],
— Indexed address: [reg+reg’], [reg+imm*reg’],
[reg+imm*reg’+imm’]

¢ Destination operands = same, except immediate values

€S 412/413 Spring 2006 Introduction to Compilers 6

Tiles

t2

mov tl, t2
k= add ¢, t2

e Tiles capture compiler’s understanding of instruction set
* May require additional move instructions
* Tiling = cover the DAG with tiles
* Need tiles for all single-node trees to guarantee that
every tree can be tiled

€S 412/413 Spring 2006 Introduction to Compilers 7

Examples

mov t2, ti B mov
t2 c,0(t1,t2)

t1
t1 t2

t3
t3

mov t2, t3 mov tl1, %eax
add t1, t3 i mul t2 N
t1 t2
t2

mov %eax, t3 £

€S 412/413 Spring 2006 Introduction to Compilers 8

Conditional Branches

* How to tile a conditional jump?
¢ Fold comparison into the tile

t1
t1 t2
test t1,tl cmp t1,t2
jnz L jl L
€S 412/413 Spring 2006 Introduction to Compilers 9

Branches in RISC Machines

* tjump/fjump translate easily into RISC instructions
* MIPS: cmp computes the test, br performs the jump

MIPS
t1
cmplt t2, t3, ti1

br t1, L

t2 t3

CS 412/413 Spring 2006 Introduction to Compilers 10

Load Effective Address

¢ lea instruction: computes a memory address
¢ All forms of indirect memory accesses are supported

t3
lea (t1,t2), t3
t1 t2
t3
lea c1(t1,t2,c2), t3
t1 t2

€S 412/413 Spring 2006 Introduction to Compilers 11

Maximal Munch Algorithm

e Maximal Munch = a greedy algorithm

e Start from top of tree

e Find largest tile that matches top node

e Tile remaining the rest of the structure recursively

€S 412/413 Spring 2006 Introduction to Compilers 12

Example

€S 412/413 Spring 2006 Introduction to Compilers 13

Example

mov 8(%ebp), ti

mov tl, t2
add $1, t2

mov t2, 8(%ebp)

€S 412/413 Spring 2006 Introduction to Compilers 14

Better Tiling

add $1, 8(%ebp)

~

+
r/m32 AN
A\ const
r/m32
CS 412/413 Spring 2006 Introduction to Compilers 15

Implementation

e Maximal Munch algorithm starts from a root node
e Find largest tile matching root

* Invoke recursively on all children of the tile

* Generate code for this tile

* Code for children will have been generated already
during the recursive calls

CS 412/413 Spring 2006 Introduction to Compilers 16

Matching Tiles

abstract class IRStmt {
Assembly munch();
}
class IRAssign extends IRStmt {
IRExpr src, dst;
Assembly munch() {
if (src instanceof IRPlus &&
((IRPlus)src).lhs.equals(dst) &&
isRegMem32(dst) {
Assembly e = ((IRPlus)src).rhs.munch();
return e.append(new AddIns(dst,e.target()));
¥
else if ...
bs
}

€S 412/413 Spring 2006 Introduction to Compilers 17

Improving Instruction Selection

e Because it is greedy, Maximal Munch does not necessarily
generate the optimal tiling

* Dynamic Programming approach: for every node, find the
optimal tiling for that node and the sub-graph rooted at that
node

— Once we have computed the optimal tiling of all nodes in
the sub-graph, the best tiling of the node by trying out
all possible tiles matching the node

— Start from leaves, work upward to the root

€S 412/413 Spring 2006 Introduction to Compilers 18

Recursive Implementation

¢ Dynamic programming algorithm uses memoization
¢ For each node, record best tile for node
¢ Start at the root:

— First, check the best tile for this node, if available

— If not computed, try each matching tile to see which one
has lowest cost

— Store the best tile and return this tile

« Finally, use entries in table to emit code

€S 412/413 Spring 2006 Introduction to Compilers 19

Dynamic Programming

class IRAssign extends IRStmt {
IRExpr src, dst;
Assembly best = null;
int optTileCost() {
if (best != null) return best.cost();
if (src instanceof IRPlus &&
((IRPlus)src) .lhs.equals(dst) &&
isRegMem32(dst)) {
int src_cost = ((IRPlus)src).rhs.optTileCost();
int cost = src_cost + ADD_COST;
if (cost < best.cost())
best = new AddIns(dst, e.target);
bs
/* consider all other tiles */
return best.cost();

}

CS 412/413 Spring 2006 Introduction to Compilers 20

Automating Instruction Selection

* Code generator generators
— Start with a specification for the tiles (with costs)
— Explicitly create data structures representing each tile

— Tiling is then performed by a generic tree-matching and
code generation procedure

— For RISC instruction sets, over-engineering

CS 412/413 Spring 2006 Introduction to Compilers 21

Modern Processors

* Modern processors have various forms of parallelism
— execution time not sum of tile times
— instruction order matters

 Processors pipeline instructions and execute different
pieces of instructions in parallel

* bad ordering (e.g. too many memory operations in
sequence) stalls processor pipeline

* processor can execute some instructions in parallel
(super-scalar)

— cost is merely an approximation
— instruction scheduling needed

CS 412/413 Spring 2006 Introduction to Compilers 22

