CS412/413

Introduction to Compilers
Radu Rugina

Lecture 31: Instruction Selection
14 Apr 06

Backend Optimizations

* Instruction selection
— translate low-level IR to assembly instructions
— A machine instruction may model multiple IR instructions
— Especially applicable to CISC architectures

* Register Allocation

— Place variables into registers
— Avoid spilling variables on stack

€S 412/413 Spring 2006 Introduction to Compilers

Instruction Selection

* Different sets of instructions in low-level IR and in the target
machine

 Instruction selection = translate low-level IR to assembly
instructions on the target machine

* Straightforward solution: translate each low-level IR
instruction to a sequence of machine instructions

Instruction Selection

* Problem: straightforward translation is inefficient

— One machine instruction may perform the computation in
multiple low-level IR instructions

* Consider a machine with includes the following instructions:

add r2, ril rl < ri+r2
mulc c, ri rl < rilxc
load r2, ri rl — *r2
store r2, ri *rl ~ r2
movem r2, rl *rl — *r2
movex r3, r2, ri *r1 « *(r2+r3)
€S 412/413 Spring 2006 Introduction to Compilers

e Example:
mov y, ril
mov z, r2
X =y +z >
y add r2, rl
mov rl, x
CS 412/413 Spring 2006 Introduction to Compilers 3
Example
i i IR code:
* Consider the computation:
ali+1] = b[j] tl = j*4
t2 = b+tl
e Assume a,b,1i,]j are variables £3 = *t2
register ra holds address of a t4 = i+l
register rb holds address of b t5 = td*4
register ri holds value of i t6 = a+th
register rj holds value of j *t6 = t3
CS 412/413 Spring 2006 Introduction to Compilers 5

Possible Translation

IR code:
e Address of b[j]: mulc 4, rj t1 = j*4
add rj, rb £2 = brtl
¢ Load value b[j]: 1load rb, rl t3 = *t2
« Address of ali+1]: add 1, ri =il
mulc 4, ri t5 = taxd
add ri, ra t6 = a+t5
*t6 = t3
¢ Store into ali+1]: store rl, ra

€S 412/413 Spring 2006 Introduction to Compilers

Another Translation

Yet Another Translation

IR code:
tl = j*4
¢ Index of b[j]: mulc 4, rj — { £9 = brtl
t3 = *t2
o Address of a[i+1]: add 1, ri t4 = i+l

=
mulc 4, ri t5 taxd
add ri, ra t6 = a+t5
) *t6 = t3
¢ Store into a[i+1]: movex rj, rb, ra
CS 412/413 Spring 2006 Introduction to Compilers 8

How to Solve the Problem?

« Difficulty: low-level IR instruction
matched by a machine instructions may

not be adjacent IR code:

t1 = jx4

¢ Example: movem rb, ra £2 = b+t
\{ 3 = #t2

t4 = i+l
¢ |dea: use tree representation t5 = t4x4
« Easier to detect matching instructions t6 = a+th

{| *t6 =13

CS 412/413 Spring 2006 Introduction to Compilers 10

IR code:
e Address of b[j]1: mulc 4, rj t1 = j*4
add rj, rb ’ £2 = b+tl
t3 = *t2
+ Address of a[i+1]: add 1, ri =i
. t5 = t4x4
mulc 4, ri
add ri, ra 6 = atth
*t6 = t3
¢ Store into ali+1]: movem rb, ra
CS 412/413 Spring 2006 Introduction to Compilers 7
Instruction Costs
 Different machine instructions have different costs
— Time cost: how fast instructions are executed
— Space cost: how much space instructions take
e Example: cost = number of cycles
add r2, ril cost=1
mulc c, ril cost=10
load r2, ri cost=3
store r2, ri cost=3
movem r2, rl cost=4
movex r3, r2, ri cost=b
* Goal: find translation with smallest cost
CS 412/413 Spring 2006 Introduction to Compilers 9
Tree Representation
* Goal: determine parts of the tree which
correspond to machine instructions IR code:
ali+1] = b[j] store tl = jx4
///// \\\\\\ £2 = bl
+ load t3 = *t2
7N] t4 = i+t
a
AN 2N t5 = t4%d
AN LEEN t6 = a+th
i1 j 4 *t6 = t3

€S 412/413 Spring 2006 Introduction to Compilers

Tiles

» Tile = tree patterns (subtrees) corresponding

to machine instructions IR code:

movem rb,ra store tl = j*4
t2 = b+tl

+ load t3 = *t2

a/’ AN 1 t4 = i+l
N 7N t5 = t4xd

to4 b =
AN PN t6 = a+th
i1 i 4 *t6 = t3
€S 412/413 Spring 2006 Introduction to Compilers 12

Tiling

e Tiling = cover the tree with disjoint tiles

Assembly:

movem rb,ra .
mulc 4, rj

add rj, rb
add 1, ri

add ri, ra

VRN movem rb,ra
i 1 j 4
€S 412/413 Spring 2006 Introduction to Compilers 13

Different Tilings

store rb, ra movex rj, rb, ra

€S 412/413 Spring 2006 Introduction to Compilers 14

Directed Acyclic Graphs

* Tree representation: appropriate for instruction selection
— Tiles = subtrees — machine instructions

* DAG construction (aka Value Numbering)
— Common sub-expressions represented by the same node
— Tile the expression DAG

e Example:
*

t = y+l 7N
y = z¥t NN

— Y
t = t+1 Z /N
z = txy y 1

CS 412/413 Spring 2006 Introduction to Compilers 15

Big Picture

¢ What the compiler has to do:
1. Translate three-address code into a DAG representation

2. Then find a good tiling of the DAG
- Maximal munch algorithm
- Dynamic programming algorithm

CS 412/413 Spring 2006 Introduction to Compilers 16

Value Numbering

e Input: a sequence of low IR instructions in a basic block
e Output: an expression DAG for the block

e Idea:
— Label each DAG node with variable which holds that value
— Build DAG bottom-up

e A variable may have multiple values in a block

» Use different variable indices for different values of the variable:
to t, t,, etc.

€S 412/413 Spring 2006 Introduction to Compilers 17

Value Numbering Algorithm

index[v] = 0 for each variable v

For each instruction I (in the order they appear)

For each v [Juse[I], with n=index[v]
if node v, doesn't exist

create node v,
Create node for instruction I, with children
{ v, | v[usel1] }
For each v[ldef[I]
index[v] = index[v] + 1
If I is of the form x = ... and n = index[x]

label the new node with x,

€S 412/413 Spring 2006 Introduction to Compilers 18

Next: Tiling

Goal: find a good covering of DAG with tiles
Issue: need to know what variables are in registers

e Assume abstract assembly:
— Machine with infinite number of registers
— Temporary/local variables stored in registers
— Parameters/heap variables: use memory accesses

€S 412/413 Spring 2006 Introduction to Compilers

Example Tiling

* Consider the instruction a = a + i
a = local variable

i = parameter

¢ Need new temporary registers
between tiles (unless operand node is
labeled with temporary)

e Result code:
mov %ebp, t0

sub $20, tO
mov (t0), t1
add ti, a

€S 412/413 Spring 2006 Introduction to Compilers

Problems

¢ Classes of registers
— Registers may have specific purposes
— Example: Pentium multiply instruction
- multiply register eax by contents of another register
- store result in eax (low 32 bits) and edx (high 32 bits)
- need extra instructions to move values into eax
¢ Two-address machine instructions
— Three-address low-level code

— Need multiple machine instructions for a single tile

¢ CISC versus RISC

— Complex instruction sets: multiple possible tilings

CS 412/413 Spring 2006 Introduction to Compilers

