CS412/413

Introduction to Compilers Radu Rugina

Lecture 27: Control Flow Analysis 05 Apr 06

Problem 4: Constant Folding

- Compute constant variables at each program point
- Constant variable = variable having a constant value on all program executions
- Dataflow information: sets of constant values
- Example: {x=2, y=3} at program point p
- Is a forward analysis
- Let V = set of all variables in the program
- Let N = set of integer numbers
- The lattice is a map from V to N
- Construct the lattice starting from a lattice for N

CS 412/413 Spring 2006

Introduction to Compilers

Constant Folding Lattice

- Second try: lattice $(N \cup \{\top, \bot\}, \le)$
 - Where $\bot \le m, \:\: \text{for all} \: m \in N$
 - And $m \le T$, for all m ∈ N
 - Is complete!
- Meaning:
 - -v=T: don't know if v is constant
 - v= \bot : v is not constant

CS 412/413 Spring 2006

Introduction to Compilers

Constant Folding Lattice

- Second try: lattice $(N \cup \{\top, \bot\}, \le)$
 - Where \bot ≤m, for all m∈N
 - And $m \le T$, for all $m \in N$
 - Is complete!
- Problem
 - Is incorrect for constant folding
 - Meet of two constants c≠d is min(c,d)
 - Meet of different constants should be \perp
- Another problem: has infinite height ...

CS 412/413 Spring 2006

Introduction to Compilers

Constant Folding Lattice

- Solution: flat lattice L = (N∪{⊤,⊥}, ⊑)
 - Where $\bot \sqsubseteq m, \text{ for all } n {\in} \, N$
 - $\ \mathsf{And} \qquad \mathsf{m} \sqsubseteq \ \top \mathsf{, \ for \ all \ } \mathsf{n} \in \mathsf{N}$
 - And distinct integer constants are not comparable

• Note: meet of any two distinct numbers is \bot

CS 412/413 Spring 2006

Introduction to Compilers

CF: Transfer Functions

• Transfer function for node n:

 $F_n(X) = (X - kill[n]) \cup gen[n]$

- Dataflow information X is a map from V to $N \cup \{\top, \bot\}$
 - Represent it as a set of pairs (var→m)
 - Denote by X[var] = m the value of var in this mapping
- If n is v = c (constant): $gen[n] = \{v \mapsto c\}$ $kill[n] = \{v \mapsto _\}$
- If n is v = u+w: $gen[n] = \{v \mapsto e\}$ $kill[n] = \{v \mapsto _\}$ where e = X[u] + X[w], if X[u] and X[w] are not \top , \bot

 $\mathbf{e} = \bot$, if $\mathbf{X}[\mathbf{u}] = \bot$ or $\mathbf{X}[\mathbf{w}] = \bot$

 $e = \top \text{, if } X[u] = \top \text{ or } X[v] = \top$

CS 412/413 Spring 2006

Introduction to Compilers

CF: Transfer Functions

• Transfer function for node n:

$$F_n(X) = (X - kill[n]) \cup gen[n]$$

- $\bullet \quad \mathsf{Here} \,\, \mathsf{gen}[n] \,\, \mathsf{is} \,\, \mathsf{not} \,\, \mathsf{constant}, \, \mathsf{it} \,\, \mathsf{depends} \,\, \mathsf{on} \,\, \mathsf{X}$
- · Exercise: prove that transfer functions are monotonic
- However, transfer functions are not distributive

CS 412/413 Spring 2006

Introduction to Compilers

CF: Distributivity

• Example:

• MFP and MOP yield different solutions

CS 412/413 Spring 2006

Introduction to Compilers

Classification of Analyses

- Forward analyses: information flows from
 - CFG entry block to CFG exit block
 - Input of each block to its output
 - $\boldsymbol{-}$ Output of each block to input of its successor blocks
 - Examples: available expressions, reaching definitions, constant folding
- Backward analyses: information flows from
 - CFG exit block to entry block
 - Output of each block to its input
 - Input of each block to output of its predecessor blocks
 - Example: live variable analysis

CS 412/413 Spring 2006

Introduction to Compilers

Another Classification

- "may" analyses:
 - information describes a property that MAY hold in SOME executions of the program
 - Usually: \sqcap = \cup , \top = \emptyset
 - Hence, initialize info to empty sets
 - Examples: live variable analysis, reaching definitions
- "must" analyses:
 - information describes a property that MUST hold in ALL executions of the program
 - Usually: \Box = \bigcirc , \top =S
 - Hence, initialize info to the whole set
 - Examples: available expressions

CS 412/413 Spring 2006

Introduction to Compilers

10

12

Next

- Control flow analysis
 - Detect loops in control flow graphs
 - Dominators
- · Loop optimizations
 - Code motion
 - Strength reduction for induction variables
 - Induction variable elimination

CS 412/413 Spring 2006

Introduction to Compilers

11

Program Loops

- Loop = a computation repeatedly executed until a terminating condition is reached
- High-level loop constructs:

- While loop: while(E) S

- Do-while loop: do S while(E)

- For loop: for(i=1, i<=u, i+=c) S

- Why are loops important:
 - Most of the execution time is spent in loops
 - Typically: 90/10 rule, 10% code is a loop
- Therefore, loops are important targets of optimizations

CS 412/413 Spring 2006

Introduction to Compilers

2

Detecting Loops

- Need to identify loops in the program
 - Easy to detect loops in high-level constructs
 - Difficult to detect loops in low-level code
- Examples:
 - Languages with unstructured "goto" constructs: structure of high-level loop constructs may be destroyed
 - Optimizing Java bytecodes (without high-level source program): only low-level code is available

CS 412/413 Spring 2006

Introduction to Compilers

Control-Flow Analysis

- · Goal: identify loops in the control flow graph
- A loop in the CFG:
 - Is a set of CFG nodes (basic blocks)
 - Has a loop header such that control to all nodes in the loop always goes through the header
 - Has a back edge from one of its nodes to the header

CS 412/413 Spring 2006

Introduction to Compilers

Dominators

• Use concept of dominators to identify loops: "CFG node d dominates CFG node n if all the paths from entry node to n go through d"

- 1 dominates 2, 3, 4
- 2 doesn't dominate 4
- 3 doesn't dominate 4
- Intuition:
 - Header of a loop dominates all nodes in loop body
 - Back edges = edges whose heads dominate their tails
 - Loop identification = back edge identification

CS 412/413 Spring 2006

Introduction to Compilers

15

Immediate Dominators

- Properties:
 - 1. CFG entry node no dominates all CFG nodes
 - 2. If d1 and d2 dominate n, then either
 - d1 dominates d2, or
 - d2 dominates d1
- Immediate dominator idom(n) of node n:
 - $idom(n) \neq n$
 - idom(n) dominates n
 - If m dominates n, then m dominates idom(n)
- Immediate dominator idom(n) exists and is unique because of properties 1 and 2

CS 412/413 Spring 2006

Introduction to Compilers

16

Dominator Tree

- Build a dominator tree as follows:
 - Root is CFG entry node $\rm n_0$
 - m is child of node n iff n=idom(m)

· Example:

CS 412/413 Spring 2006

Introduction to Compilers

Computing Dominators

- Formulate problem as a system of constraints:
 - dom(n) is set of nodes who dominate n
 - $dom(n_0) = \{n_0\}$
 - $-\;dom(n)=(\;\cap\;\{\;dom(p)\;|\;p\in\,pred(n)\;\}\;\;)\;\;\cup\;\;\{\;n\;\}$
- Can also formulate problem in the dataflow framework
 - What is the dataflow information?
 - What is the lattice?
 - What are the transfer functions?
 - Use dataflow analysis to compute dominators

CS 412/413 Spring 2006

Introduction to Compilers

18

Natural Loops

- Back edge: edge n→h such that h dominates n
- Natural loop of a back edge $n\rightarrow h$:
 - h is loop header
 - Loop nodes is set of all nodes that can reach \boldsymbol{n} without going through \boldsymbol{h}
- · Algorithm to identify natural loops in CFG:
 - Compute dominator relation
 - Identify back edges
 - Compute the loop for each back edge

CS 412/413 Spring 2006

Introduction to Compilers

Disjoint and Nested Loops

- Property: for any two natural loops in the flow graph, one of the following is true:
 - 1. They are disjoint
 - 2. They are nested
 - 3. They have the same header
- Eliminate alternative 3: if two loops have the same header and none is nested in the other, combine all nodes into a single loop

Two loops: {1,2} and {1,3} Combine into one loop: {1,2,3}

CS 412/413 Spring 2006

Introduction to Compilers

Loop Preheader

- Several optimizations add code before header
- Insert a new basic block (called preheader) in the CFG to hold this code

CS 412/413 Spring 2006

Introduction to Compilers

21

23

Loop Optimizations

- Now we know the loops in the program
- Next: optimize loops
 - Loop invariant code motion
 - $-\ \mathsf{Strength}\ \mathsf{reduction}\ \mathsf{of}\ \mathsf{induction}\ \mathsf{variables}$
 - Induction variable elimination

CS 412/413 Spring 2006

Introduction to Compilers

22

24

Loop Invariant Code

- Idea: if a computation produces same result in all loop iterations, move it out of the loop
- Example: for (i=0; i<10; i++) a[i] = 10*i + x*x;
- Expression x*x produces the same result in each iteration; move it of the loop:

t = x*x; for (i=0; i<10; i++) a[i] = 10*i + t;

CS 412/413 Spring 2006

Introduction to Compilers

Loop Invariant Computation

- An instruction $a=b\ \mathsf{OP}\ \mathsf{c}$ is loop-invariant if each operand is:
 - Constant, or
 - Has all definitions outside the loop, or
 - Has exactly one definition, and that is a loop-invariant computation
- Reaching definitions analysis computes all the definitions of x and y which may reach $t=x\ OP\ y$

CS 412/413 Spring 2006

Introduction to Compilers

4

Algorithm

```
INV = Ø
Repeat
   for each instruction ∉ INV
      if operands are constants, or
        have definitions outside the loop, or
        have exactly one definition d ∈ INV
      then
        INV = INV ∪ {i}
Until no changes in INV
CS 412/413 Spring 2006 Introduction to Compilers 25
```

Code Motion

- Next: move loop-invariant code out of the loop
- $\bullet \ \ \mathsf{Suppose} \ \mathsf{a} = \mathsf{b} \ \mathsf{OP} \ \mathsf{c} \ \mathsf{is} \ \mathsf{loop\text{-}invariant}$
- We want to hoist it out of the loop
- Code motion of a definition d: a = b OP c in pre-header is valid if:
 - 1. Definition d dominates all loop exits where a is live
 - 2. There is no other definition of a in loop
 - 3. All uses of a in loop can only be reached from definition d

CS 412/413 Spring 2006

Introduction to Compilers

Other Issues

• Preserve dependencies between loop-invariant instructions when hoisting code out of the loop

```
for (i=0; i<N; i++) {
    x = y+z;
    x = y+z;
    t = x*x;
    a[i] = 10*i + x*x;
    for (i=0; i<N; i++)
        a[i] = 10*i + t;
}</pre>
```

Nested loops: apply loop invariant code motion algorithm multiple
times.

CS 412/413 Spring 2006

Introduction to Compilers