CS412/413

Introduction to Compilers
Radu Rugina

Lecture 27: Control Flow Analysis
05 Apr 06

Problem 4: Constant Folding

e Compute constant variables at each program point
» Constant variable = variable having a constant value on
all program executions

e Dataflow information: sets of constant values
e Example: {x=2, y=3} at program point p
* Is a forward analysis

e Let V = set of all variables in the program

e Let N = set of integer numbers

e The lattice is a map from V to N

Construct the lattice starting from a lattice for N

€S 412/413 Spring 2006 Introduction to Compilers

Constant Folding Lattice

* Second try: lattice (NU{T, L}, <) T|
— Where L <m, for all mCN |

— And m=<T, for all mCN ?

— Is complete! 1

0

* Meaning: 4
— v=T: don’t know if v is constant _'2

— v=_1: v is not constant |
1

CS 412/413 Spring 2006 Introduction to Compilers

Constant Folding Lattice

T
* Second try: lattice (NU{T, L}, <) |
— Where L <m, for all mCN |
2
— And m=<T, for all mCIN |
— Is complete! }
¢ Problem: ?
— Is incorrect for constant folding -1
— Meet of two constants c#d is min(c,d) _'2
— Meet of different constants should be L |
|
* Another problem: has infinite height ... 1

CS 412/413 Spring 2006 Introduction to Compilers

Constant Folding Lattice

* Solution: flat lattice L = (NU{T, L1}, &)
— Where L. & m, forall n(ON

— And m E T, forall nON

— And distinct integer constants are not comparable

T

—7 I\
0 1 2

2 1

~\I
L

* Note: meet of any two distinct numbers is L

€S 412/413 Spring 2006 Introduction to Compilers

CF: Transfer Functions

¢ Transfer function for node n:

F,(X) = (X =kill[n]) U gen[n]
* Dataflow information X is a map from V to NU{T, L}

— Represent it as a set of pairs (var—m)
— Denote by X[var] = m the value of var in this mapping
e Ifnisv = c (constant): gen[n] = {v—~c} kill[n] = {v—~_}
e Ifnisv = utu: gen[n] = {v—e} Kkillln] = {v—_}
where e = X[u] + X[w], if X[u] and X[w] are not T, L
e=1,ifX[u] = L orX[u =L
e=T,ifX[u=TorXw=T

€S 412/413 Spring 2006 Introduction to Compilers

CF: Transfer Functions
* Transfer function for node n:
F.(X) = (X —=kill[n]) U gen[n]
* Here gen[n] is not constant, it depends on X
* Exercise: prove that transfer functions are monotonic

* However, transfer functions are not distributive

€S 412/413 Spring 2006

Introduction to Compilers 7

CF: Distributivity

¢ Example:

¢ MFP and MOP yield different solutions

€S 412/413 Spring 2006 Introduction to Compilers

Classification of Analyses

e Forward analyses: information flows from
— CFG entry block to CFG exit block
— Input of each block to its output
— Output of each block to input of its successor blocks

— Examples: available expressions, reaching definitions, constant
folding

* Backward analyses: information flows from
— CFG exit block to entry block
— Output of each block to its input
— Input of each block to output of its predecessor blocks
— Example: live variable analysis

CS 412/413 Spring 2006 Introduction to Compilers 9

Another Classification

* “may” analyses:
— information describes a property that MAY hold in SOME
executions of the program
— Usually: M=U, T=0
— Hence, initialize info to empty sets
— Examples: live variable analysis, reaching definitions

* “must” analyses:

— information describes a property that MUST hold in ALL
executions of the program

— Usually:M=N, T=S
— Hence, initialize info to the whole set
— Examples: available expressions

CS 412/413 Spring 2006 Introduction to Compilers

Next

e Control flow analysis
— Detect loops in control flow graphs
— Dominators

e Loop optimizations
— Code motion
— Strength reduction for induction variables
— Induction variable elimination

€S 412/413 Spring 2006 Introduction to Compilers 1

Program Loops

e Loop = a computation repeatedly executed until a

terminating condition is reached

High-level loop constructs:

— While loop: while(E) S

— Do-while loop: do S while(E)

— For loop: for(i=1, i<=u, i+=c) S

Why are loops important:
— Most of the execution time is spent in loops
— Typically: 90/10 rule, 10% code is a loop

Therefore, loops are important targets of optimizations

€S 412/413 Spring 2006 Introduction to Compilers

Detecting Loops

e Need to identify loops in the program
— Easy to detect loops in high-level constructs
— Difficult to detect loops in low-level code

e Examples:
— Languages with unstructured “goto” constructs: structure of
high-level loop constructs may be destroyed

— Optimizing Java bytecodes (without high-level source
program): only low-level code is available

€S 412/413 Spring 2006 Introduction to Compilers 13

Control-Flow Analysis
* Goal: identify loops in the control flow graph

* A loop in the CFG:
— Is a set of CFG nodes (basic blocks)
— Has a loop header such that
control to all nodes in the loop
always goes through the header
— Has a back edge from one of its
nodes to the header

€S 412/413 Spring 2006 Introduction to Compilers

Dominators

¢ Use concept of dominators to identify loops:

“CFG node d dominates CFG node n if all the paths from
entry node to n go through d”

1 dominates 2, 3, 4
2 doesn’t dominate 4
3 doesn’t dominate 4

¢ Intuition:
— Header of a loop dominates all nodes in loop body
— Back edges = edges whose heads dominate their tails
— Loop identification = back edge identification

CS 412/413 Spring 2006 Introduction to Compilers 15

Immediate Dominators

¢ Properties:
1. CFG entry node n, dominates all CFG nodes
2. If d1 and d2 dominate n, then either
— d1 dominates d2, or
— d2 dominates d1

* Immediate dominator idom(n) of node n:
— idom(n) #n
— idom(n) dominates n
— If m dominates n, then m dominates idom(n)

* Immediate dominator idom(n) exists and is unique because
of properties 1 and 2

CS 412/413 Spring 2006 Introduction to Compilers 16

Dominator Tree

e Build a dominator tree as follows:
— Root is CFG entry node nj
— m is child of node n iff n=idom(m)

¢ Example:

€S 412/413 Spring 2006 Introduction to Compilers 17

Computing Dominators

e Formulate problem as a system of constraints:
— dom(n) is set of nodes who dominate n
— dom(ny)= {ny}
—dom(n) = (N {dom(p) | pOopred(n)}) U {n}
* Can also formulate problem in the dataflow
framework
— What is the dataflow information?
— What is the lattice?
— What are the transfer functions?

— Use dataflow analysis to compute dominators

€S 412/413 Spring 2006 Introduction to Compilers 18

Natural Loops

* Back edge: edge n— h such that h dominates n
e Natural loop of a back edge n— h:
— h is loop header

— Loop nodes is set of all nodes that can reach n without
going through h

 Algorithm to identify natural loops in CFG:
— Compute dominator relation
— Identify back edges
— Compute the loop for each back edge

€S 412/413 Spring 2006 Introduction to Compilers 19

Disjoint and Nested Loops

* Property: for any two natural loops in the flow graph, one of
the following is true:

1. They are disjoint
2. They are nested
3. They have the same header

¢ Eliminate alternative 3: if two loops have the same header
and none is nested in the other, combine all nodes into a

single loop
1
'- Two loops: {1,2} and {1,3}
Combine into one loop: {1,2,3}
CS 412/413 Spring 2006 Introduction to Compilers 20

Loop Preheader

 Several optimizations add code before header

* Insert a new basic block (called preheader) in the
CFG to hold this code

CS 412/413 Spring 2006 Introduction to Compilers 21

Loop Optimizations

* Now we know the loops in the program

e Next: optimize loops
— Loop invariant code motion
— Strength reduction of induction variables
— Induction variable elimination

CS 412/413 Spring 2006 Introduction to Compilers 22

Loop Invariant Code

¢ Idea: if a computation produces same result in all loop
iterations, move it out of the loop

e Example: for (i=0; i<10; i++)
ali]l = 10*%i + x*x;

e Expression x*x produces the same result in each iteration;
move it of the loop:

t = x*x;
for (i=0; i<10; i++)
ali]l = 10*i + t;

€S 412/413 Spring 2006 Introduction to Compilers 23

Loop Invariant Computation

* An instruction a = b OP c is loop-invariant if each operand
is:
— Constant, or
— Has all definitions outside the loop, or

— Has exactly one definition, and that is a loop-invariant
computation

* Reaching definitions analysis computes all the definitions of
x and y which may reach t = x OP y

€S 412/413 Spring 2006 Introduction to Compilers 2

Algorithm

Inv =0

Repeat
for each instruction [INV
if operands are constants, or
have definitions outside the loop, or
have exactly one definition d O INV
then
INV = INV U {i}
Until no changes in INV

€S 412/413 Spring 2006 Introduction to Compilers 25

Code Motion

Next: move loop-invariant code out of the loop
Suppose a = b OP c is loop-invariant
We want to hoist it out of the loop

Code motion of a definition d: a = b OP c in pre-header is
valid if:
1. Definition d dominates all loop exits where a is live
2. There is no other definition of a in loop
3. All uses of a in loop can only be reached from
definition d

€S 412/413 Spring 2006 Introduction to Compilers 26

Other Issues

Preserve dependencies between loop-invariant instructions when
hoisting code out of the loop

for (i=0; i<N; i++) { X = y+z;

X = y+z; t = x*x;

ali] = 10%i + x*x; for(i=0; i<N; i++)
i ali] = 10%i + t;

Nested loops: apply loop invariant code motion algorithm multiple

times
tl = x*x;

for (i=0; i<N; i++) for (i=0; i<N; i++) {

t2 = til+ 10%i;

for (j=0; j<M; j++)
alil[j] = t2 + 100%j;

for (j=0; j<M; j++)
alil[j] = x*x + 10%i +
100%3;

CS 412/413 Spring 2006 Introduction to Compilers 27

