CS412/413

Introduction to Compilers
Radu Rugina

Lecture 26: Standard Dataflow Analyses
03 Apr 06

Dataflow Analysis

Dataflow analysis
— sets up system of equations
— iteratively computes MFP

— Terminates because transfer functions are monotonic and
lattice has finite height

Other possible solutions: FP, MOP, IDEAL
All are safe solutions, but some are more precise:

FP E MFP E MOP E IDEAL
MFP = MOP if distributive transfer functions

MOP and IDEAL are intractable
Compilers use dataflow analysis and MFP

€S 412/413 Spring 2006 Introduction to Compilers 2

Dataflow Analysis Instances

e Apply dataflow framework to several analysis
problems:
— Live variable analysis
— Available expressions
— Reaching definitions
— Constant folding

 Discuss:
— Implementation issues
— Classification of dataflow analyses

CS 412/413 Spring 2006 Introduction to Compilers 3

CS 412/413 Spring 2006

Problem 1: Live Variables

Compute live variables at each program point
Live variable = variable whose value may be used later,
in some execution of the program

Dataflow information: sets of live variables
Example: variables {x,z} may be live at program point p

Introduction to Compilers 4

LV: Dataflow Equations

Equations:
in[n] = (out[n] — def[n]) U use[n], for all n

out[n] = U {in[n] | n'Osucc(n)}, for all n
out[n,] = d,

Where:

def[n] = set of variables defined (written) by n
use[n] = set of variables used (read) by n

Meaning of transfer function:

“A variable is live before a node if the node uses it, or if the
variable is live after and the node doesn’t define it”

Meaning of union operator:

“A variable is live at the end of node n if it is live at the beginning
of one of its successor nodes”

€S 412/413 Spring 2006 Introduction to Compilers 5

€S 412/413 Spring 2006

LV: Monotonicity

Are transfer functions: F (X) = (X — def[n]) U use[n]
monotonic?

Observation: def[n] and use[n] are constant: they do not depend on
the current dataflow information X.
Because def[n] is constant, G(X) = X — def[n] is monotonic:
X1 2 X2 implies X1 — def[n] 2 X2 — def|n]
Because use[n] is constant, H(Y) = Y U use[n] is monotonic:
Y1 2 Y2 implies Y1 U use[n] 2 Y2 U use[n]
Put pieces together: F (X) is monotonic
X1 2 X2 implies
(X1 — def[n]) U use[n] 2 (X2 — def[n]) U use[n]

Introduction to Compilers 6

LV: Distributivity

* Are transfer functions: F (X) = (X — def[n]) U use[n]
distributive?

* Since def[n] is constant: G(X) = X — def[n] is distributive:
(X1 U X2) —def[n] = (X1 —def[n]) U (X2 - def[n])
because: (a U b) —c=(a—c) U (b-c)

* Since use[n] is constant: H(Y) = Y U use[n] is distributive:
(YL U Y2) U useln] = (Y1 U use[n]) U (Y2 U use[n])
because: (a U b) Uc=(a Uc)U (b Uc)

* Put pieces together: F (X) is distributive
F, (X1 U X2) = F (X1) U F (X2)

€S 412/413 Spring 2006 Introduction to Compilers 7

Live Variables: Summary

e Lattice: (2, 2, U,), has finite height
¢ Meet is set union, top is the empty set
¢ s a backward dataflow analysis

¢ Dataflow equations:
in[n] = (out[n] — def[n]) U usel[n], for all n
out[n] = U {in[n] | n'Osucc(n)}, for all n
out[n] =d,
* Transfer functions are monotonic and distributive
 lterative solution to dataflow equations:
- terminates
- computes MOP solution

€S 412/413 Spring 2006 Introduction to Compilers 8

Problem 2: Available Expressions

* Compute available expressions at each program point

¢ Available expression = expression evaluated in all program
executions, and its value would be the same if re-evaluated

 Similar to available copies for constant propagation

* Dataflow information: sets of available expressions
* Example: expressions {x+y, y-z} are available at point p
¢ s a forward analysis

CS 412/413 Spring 2006 Introduction to Compilers 9

AE: Dataflow Equations

e Equations:
out[n] = F (in[n]), for all n

in[n] = N {out[n] | n'Upred(n)}, for all n

in[ny] = d,

e Meaning of intersection meet operator:

“An expression is available at entry of node n if it is
available at the exit of all predecessors”

CS 412/413 Spring 2006 Introduction to Compilers 10

AE: Transfer Functions

¢ General form of transfer functions:
F,(X) = (X =kill[n]) U gen[n]
where:
kill[n] = expressions “killed” by n
gen[n] = new expressions “generated” by n

* Meaning of transfer functions: “Expressions available after node n

include: 1) expressions available before n, not killed by n, and 2)
expressions generated by n”

€S 412/413 Spring 2006 Introduction to Compilers 1

Available Expressions: Summary

e Lattice: (28, &, N, 2F); has finite height
¢ Meet is set intersection, top element is entire set
¢ s a forward dataflow analysis

¢ Dataflow equations:
out[n] = F,(in[n]), for all n
in[n] = N {out[n] | n'Upred(n)}, for all n
in[nJ =4,

* Transfer functions: F,(X) = (X —kill[n]) U gen[n]
- are monotonic and distributive

* lterative solving of dataflow equation:
- terminates
- computes MOP solution

€S 412/413 Spring 2006 Introduction to Compilers 12

Problem 3: Reaching Definitions

» Compute reaching definitions for each program point

* Reaching definition = definition of a variable whose assigned value
may be observed at current program point in some execution of
the program

¢ Dataflow information: sets of reaching definitions
* Example: definitions {d2, d7} may reach program point p
e s a forward analysis

€S 412/413 Spring 2006 Introduction to Compilers 13

RD: Dataflow Equations

e Equations:
out[n] = (in[n] — kill[n]) U gen[n], for all n
in[n] = U {out[n] | n'Opred(n)}, for all n

in[n,] =4,

* Meaning of intersection meet operator:
“A definition reaches the entry of node n if it reaches the exit of
at least one of its predecessor nodes”

¢ Meaning of transfer functions: “Reaching definitions after node n
include: 1) reaching definitions before n, not killed by n, and 2)
reaching definitions generated by n”

€S 412/413 Spring 2006 Introduction to Compilers 14

Reaching Definitions: Summary

e Lattice: (2°, 2, U, 0); has finite height
¢ Meet is set union, top element is O
¢ Is a forward dataflow analysis

¢ Transfer functions are monotonic and distributive

* |terative solving of dataflow equation:
- terminates

- computes MOP solution

CS 412/413 Spring 2006 Introduction to Compilers 15

Efficient Implementation

e Lattices in these analyses = power sets
e Information in these analyses = subsets of a set
. How to implement subsets?

1. Set implementation
- Data structure with as many elements as the subset has
- Usually list implementation

2. Bitvectors:
- Use a bit for each element in the overall set
- Bit for element x is: 1 if x is in subset, 0 otherwise
- Example: S = {a,b,c}, use 3 bits
- Subset {a,c} is 101, subset {b} is 010, etc.

CS 412/413 Spring 2006 Introduction to Compilers 16

Implementation Tradeoffs

e Advantages of bitvectors:
— Efficient implementation of set union/intersection:
set union is bitwise “or” of bitvectors
set intersection is bitwise “and” of bitvectors
— Drawback: inefficient for sparse subsets

* In general, bitvectors work well if the size of the
(original) set is linear in the program size

€S 412/413 Spring 2006 Introduction to Compilers 17

Problem 4: Constant Folding

e Compute constant variables at each program point

* Constant variable = variable having a constant value on
all program executions

¢ Dataflow information: sets of constant values
e Example: {x=2, y=3} at program point p
 Is a forward analysis

e Let V = set of all variables in the program

e Let N = set of integer numbers

e The lattice is a map from V to N

e Construct the lattice starting from a lattice for N

€S 412/413 Spring 2006 Introduction to Compilers 18

Constant Folding Lattice

* Second try: lattice (NU{T, L}, <) T
— Where 1.<m, for all mCN I

— And m=<T, for all mCN ?

— |s complete! 1

0

* Meaning: 4
— v=T: don't know if v is constant _'2

— v=_1: vis not constant 1

1

€S 412/413 Spring 2006 Introduction to Compilers

Constant Folding Lattice

T
* Second try: lattice (NU{T, L}, <) |
— Where 1.<m, for all mCN |
2
— And m=<T, for all mCN \
— |s complete! 1
|
¢ Problem: ?
— Is incorrect for constant folding -1
— Meet of two constants c#d is min(c,d) _'2
— Meet of different constants should be L !
|
* Another problem: has infinite height ... 1
CS 412/413 Spring 2006 Introduction to Compilers 20

Constant Folding Lattice

* Solution: flat lattice L = (NU{T, L}, £)
— Where L & m, forall nON

— And m E T, for all nON

— And distinct integer constants are not comparable

T

—7 I N0
0 1 2

2 1

~\ |
L

» Note: meet of any two distinct numbers is L

CS 412/413 Spring 2006 Introduction to Compilers

CF: Transfer Functions

* Transfer function for node n:
F.(X) = (X =kill[n]) U gen[n]
¢ Dataflow information X is a map from V to NU{T, L}

— Represent it as a set of pairs (var—m)
— Denote by X[var] = m the value of var in this mapping

Ifnisv = c (constant): gen[n] = {v~—c} killn] = {v~—_}

Ifnisv = u+w: gen[n] = {v—e} Kkiln] = {v—_}

where e = X[u] + X[w], if X[u] and X[w] are not T, L
e=1,ifX[u] = L orX[uw =L
e=T,ifX[u]=TorXw =T

CS 412/413 Spring 2006 Introduction to Compilers 22

CF: Transfer Functions

* Transfer function for node n:
F.(X) = (X =kill[n]) U gen[n]

* Here gen[n] is not constant, it depends on X
« Exercise: prove that transfer functions are monotonic
* However, transfer functions are not distributive

€S 412/413 Spring 2006 Introduction to Compilers

CF: Distributivity

¢ Example:

¢ MFP and MOP yield different solutions

€S 412/413 Spring 2006 Introduction to Compilers 2

Classification of Analyses

* Forward analyses: information flows from
— CFG entry block to CFG exit block
— Input of each block to its output
— Output of each block to input of its successor blocks

— Examples: available expressions, reaching definitions, constant
folding

e Backward analyses: information flows from
— CFG exit block to entry block
— Output of each block to its input
— Input of each block to output of its predecessor blocks
— Example: live variable analysis

€S 412/413 Spring 2006 Introduction to Compilers 25

Another Classification

* “may” analyses:
— information describes a property that MAY hold in SOME
executions of the program
— Usually: M=U, T=0
— Hence, initialize info to empty sets
— Examples: live variable analysis, reaching definitions

* “must” analyses:

— information describes a property that MUST hold in ALL
executions of the program

— Usually:M=N, T=S
— Hence, initialize info to the whole set
— Examples: available expressions

€S 412/413 Spring 2006 Introduction to Compilers 26

