CS412/413

Introduction to Compilers
Radu Rugina

Lecture 25: More Dataflow Analysis
31 Mar 06

Dataflow Analysis Framework

* A dataflow analysis framework consists of:
— A lattice (L, &, 11, T) where:
* L is the dataflow information
¢ T is the ordering relation
* I is the merge operation (GLB)
e T is the bottom element

— Transfer functions F, : L — L for each CFG node n

— Boundary dataflow information d,
* Before CFG entry node for a forward analysis
o After CFG exit node for a backward analysis

€S 412/413 Spring 2006 Introduction to Compilers 2

Dataflow Equations

e Forward dataflow analysis:

in[ny] = d,, where n, = CFG entry node
out[n] = F, (in[nl), forall n
in[n] = 1 {out[n] | n'Upred(n)}, forall n

* Backward dataflow analysis:

out[n,] = d,, where n, = CFG exit node
in[n] = F, (out[n]), forall n
out[n] = m {in[n] | n'Osucc(n)}, forall n

CS 412/413 Spring 2006 Introduction to Compilers

Solving the Dataflow Equations

* The constraints (forward analysis):
in[ny] = d,, where n, = CFG entry node
out[n] = F, (in[nl), forall n
in[n] = M {out[n] | n'Upred(n)}, forall n

¢ Solution = the set of all in[n], out[n] for all n’s,
such that all constraints are satisfied

* Fixed-point algorithm to solve constraints:
— Initialize in[n,]=d,
— Initialize everything else to T
— Repeatedly enforce constraints
— Stop when dataflow solution

CS 412/413 Spring 2006 Introduction to Compilers 4

Worklist Algorithm (Forward)

in[ny] = d,
in[n] = T, for all n # n,
out[n] = T, for all n

worklist = {n,}

while (worklist # O)
Remove a node n from the worklist
out[n] = Fn(in[nl)

for each successor n’ :
in[n] = in[n'] M out[n]
if (in[n'] has changed)
add n' to the worklist

€S 412/413 Spring 2006 Introduction to Compilers

An Implementation

void analyzeForward(Method m, DataflowInfo d0) {
result.put(m.getCFG() .getEntryNode (), d0);

Stack<CFGNode> worklist = new Stack<CFGNode>();
while (!worlist.isEmpty()) {
CFGNode n = worklist.pop();
DataflowInfo in = result.get(n);
DataflowInfo out = transferFunction(n,in);
for (CFGNode succ : n.getSuccessors())
if (merge(succ, out))
worklist.add(succ);

€S 412/413 Spring 2006 Introduction to Compilers 6

An Implementation

boolean merge(CFGNode n, DataflowInfo d) {
DataflowInfo info = result.get(n);
if (info == null) {
result.put(n, d.clone());
return true;
}
return info.meet(d);

}

€S 412/413 Spring 2006 Introduction to Compilers

Correctness

e Correctness of the worklist algorithm:
— At the end, all dataflow equations are satisfied

e Agument:
— Loop maintains the invariant that the constraints
in[n] = I {out[n] | n'Upred(n)}
out[n] = F (in[nl)
hold for all the nodes n not in the worklist
— At the end, worklist is empty

€S 412/413 Spring 2006 Introduction to Compilers 8

Transfer Functions

e Transfer functions are required to be monotonic:
F: L - L is monotonic if
x Ey implies F(x) & F(y)

e Distributivity: function F : L — L is distributive if
F(xmy) =F() nF(y)

* Property: F is monotonic iff F(x M'y) = F(x) M F(y)
- any distributive function is monotonic

CS 412/413 Spring 2006 Introduction to Compilers

Termination

e Do these algorithms terminate?
* Key observation: at each iteration, information increases in
the lattice

in,4[n] E in[n] and out,,[n] E out,[n]

e Proof by induction:
— Induction basis: true, because we start with bottom element,
which is less than everything

— Induction step: use monotonicity of transfer functions and join
operation

¢ Information forms a chain: iny[n] =2 in,[n] 2 iny[n] ...

CS 412/413 Spring 2006 Introduction to Compilers 10

Chains in Lattices

* A chain in a lattice L is a totally ordered subset S of L:

x EyoryExforanyx,ydS

* In other words:

Elements in a totally ordered subset S can be indexed to
form an descending sequence:

X; 2 X x3 2 ..

e Height of a lattice = size of its largest chain
¢ Lattice with finite height: only has finite chains

€S 412/413 Spring 2006 Introduction to Compilers

Termination

* In the iterative algorithm, for each node n:
{in,[n], in,[nl, ...}

is a chain in the lattice

* If lattice has finite height then there is a number k such that in;[n]
= in,4[n], foralli =k and all n

 Ifin[n] = in,[n] then also out[n] = out, [n]

e Algorithm terminates in at most k*N iterations, where N is the
number of CFG nodes

¢ To summarize: dataflow analysis terminates if
1. Transfer functions are monotonic
2. Lattice has finite height

€S 412/413 Spring 2006 Introduction to Compilers 12

Multiple Solutions

The iterative algorithm computes a solution of the system of
dataflow equations

. is the solution unique?
No, dataflow equations may have multiple solutions !

Example: live variables

Equations: I1 = I2-{y}
I3 = (I4-{x}) U {y}
I2=1I1 U I3
14 = {x}

Solution 1: T1={}, I2={y}, I3={y}, I4={x}
Solution 2: T1={x}, I2={x,y}, I3={y}, I4={x}

€S 412/413 Spring 2006 Introduction to Compilers 13

Safety and Precision

* Safety: any solution that satisfies the dataflow equations is safe

* Precision: a solution to an analysis problem is more precise if it
less conservative

 Live variables analysis problem:
— Solution is more precise if the sets of live variables are smaller

— Solution which reports that all variables are live at each point is safe,
but is too imprecise

 In the lattice framework: d1 is more precise than d2 if d1 is higher
in the lattice than d2: d2 E d1

€S 412/413 Spring 2006 Introduction to Compilers 14

Maximal Fixed Point Solution

Property: among all the solutions to the system of dataflow
equations, the iterative solution is the most precise

Intuition:

— We start with the top element at each program point (i.e.
most precise information)

— Then refine the information at each iteration to satisfy the
dataflow equations

— Final result will be the closest to the top

Iterative solution for dataflow equations is called Maximal Fixed
Point solution (MFP)

For any solution FP of the dataflow equations: FP &= MFP

CS 412/413 Spring 2006 Introduction to Compilers 15

Meet Over Paths Solution
e Is MFP the best solution to the analysis problem?

e Another approach: consider a lattice framework, but use a
different way to compute the solution
— Let G be the control flow graph with start node n
— For each path p,=[ny, ny, ..., n] from entry to node n,:
inlp,J = Fpy .o (Fy (F(d)))
— Compute solution as
infn] = u { inlp,] | all paths p, from n, to n}

* This solution is the Meet Over Paths solution (MOP)

CS 412/413 Spring 2006 Introduction to Compilers 16

MFP versus MOP

Precision: can prove that MOP solution is always more
precise than MFP

MFP = MOP

Why not use MOP?
MOP is intractable in practice

1. Exponential number of paths: for a program consisting of
a sequence of N if statements, there will 2N paths in the
control flow graph

2. Infinite number of paths: for loops in the CFG

€S 412/413 Spring 2006 Introduction to Compilers 17

Importance of Distributivity

e Property: if transfer functions are distributive, then the
solution to the dataflow equations is identical to the
meet-over-paths solution

MFP = MOP

e For distributive transfer functions, can compute the
intractable MOP solution using the iterative fixed-point
algorithm

€S 412/413 Spring 2006 Introduction to Compilers 18

Better Than MOP?

* Is MOP the best solution to the analysis problem?

* MOP computes solution for all path in the CFG
e There may be paths which will
never occur in any execution

* So MOP is conservative

e IDEAL = solution which takes
into account only paths which
occur in some execution

Introduction to Compilers 19

e This is the best solution
— but it is undecidable

€S 412/413 Spring 2006

Summary

Dataflow analysis
— sets up system of equations
— iteratively computes MFP

— Terminates because transfer functions are monotonic and
lattice has finite height

Other possible solutions: FP, MOP, IDEAL

All are safe solutions, but some are more precise:

FP E MFP E MOP E IDEAL
MFP = MOP if distributive transfer functions

MOP and IDEAL are intractable
Compilers use dataflow analysis and MFP

€S 412/413 Spring 2006 Introduction to Compilers 20

