CS412/413

Introduction to Compilers

Radu Rugina

Lecture 24: Dataflow Analysis Frameworks

29 Apr 06

Live Variable Analysis

What are the live
variables at each
program point?

Method:
1. Define sets of
live variables

1. Build constraints
2. Solve constraints

€S 412/413 Spring 2006

Introduction to Compilers 2

Derive Constraints

Derive Constraints

L, =L,U {c}

L,=L, UL,

L,= (L~{x}) U {y}
L,= (Ls~{yH U {z}
Ly = Ly U {d}

Ly=L, ULy

L= (L= U {y,z}
Ly= L,

Ly = Ly-{z}

L= L

10~ b1

L, = (L,~{zhH U {x}

CS 412/413 Spring 2006

Introduction to Compilers 4

Constraints for each L
)) L
instruction: ?
L3
. L
in[l]=(out]]-def{1]) !
5
U use[l] L,
L7
Constraints for L,
control flow: Lo
Ll(]
out[B] = . ljﬂ(ﬁ)in[B'] — Ly
L12
CS 412/413 Spring 2006 Introduction to Compilers
Initialization
L,=1,U {c} L=
L= L, UL, L, =03
L= LGP U {5} L =0
L= (Le-TyD) U {2} L ml
o7 e “ L, =(}
L= LU {d
BT kU @ L,=0
D Getsd U 4.2} b0
oo L, =
LL . L~
9 = L1z Lo =0
L\ﬂ L\
2 = x L, ={}
L, = L,~{zhH) U {x} L, =0

€S 412/413 Spring 2006

Introduction to Compilers

Iteration 1

L=L,U {c}
L,=1L, ULy,

Ly= (L-&H U {y}
L,= (Ls-{yH v {z}

L= Lg U {d}

Ly=1, UL,

L, = (L&} U {y,z}

Ly= Ly

Ly = Ly~{z}

Lip= Ly

L, = (L,~{zhH) U {x} z=Xx

€S 412/413 Spring 2006

Introduction to Compilers

L={x,y,z,c,d},
L, ={x,y,2,d}
L, ={y,z,d}
L, ={z,d}

L ={y,z,d}
L ={y.z}

L, ={y,z}

Ly ={}

Lo ={}

L, ={}

L, ={x}

L, ={}

Iteration 2

L={x,y,z,c,d}

Fixed-point!

L=1L,U {c} L={x,y,z,c,d}
L =1 L, L, ={x,y,z,c,d}
,=1L, UL,
L= LGP U {3} Ly =ly,z,c,d}
L= (Le-GyD) U {2} b mlxoz,0, 03
N i “ L ={x,y,z,c,d}
EEZ EEU id} L, ={x,y,z,c,d}
LA A L, ={y,z,c,d}
I;: ELB_{X}) U {y,z} L, ={x,y.c,d}
. L, ={x,y,c,d}
Lo = L-{z} o e
A Ly, ={x,y,z,c,d}
o p— L, ={x}
L, = (L,~{zh) U {x} L, =0

CS 412/413 Spring 2006 Introduction to Compilers 8

L, U {c}

L, ULy, L, ={x,y,z,c,d}
= Lt U Ly =ly,z,c.d}
= Lyh U =} btz

s L, ={x,y,z,c,d}
LU ta) Le ={x,y,z,c,d}
L UL

o L, ={y,z,c,d}
i EEB—{X}) U {y,z} L, ={x.y.c,d}

J L, ={x,y,c,d}

= L,,~{z} ° ’
Ly, ={x,y,2,¢,d}
L\ﬂ = L\
2 - x Ly, ={x}
L, = L,~{zhH) U {x} L, =0
CS 412/413 Spring 2006 Introduction to Compilers 7
Final Result
L={x,y,z,c,d}
L, ={x,y,z,c,d}
L, ={y,z,c,d}
x live here ! L, ={x,z,c,d}

Ly ={x,y,z,c,d}

Ls ={x,y,z,c,d}

L, ={y,z,c,d}
. Lg ={x,y,c,d
Final result: sets d EX Ve ;
. . L, ={x,y,c,d
of live variables at o TH0Y
. L, ={x,y,z,c,d}
each program point
2= x Ly, ={x}
L, =0
CS 412/413 Spring 2006 Introduction to Compilers 9

Characterize All Executions

L={x,y,z,c,d}
L, ={x,y,z,c,d}
L, ={y,z,c,d}
L, ={x,z,c,d}
L ={x,y,z,c,d}

The analysis detects
that there is an
execution which uses
the value x = y+1

L ={x,y,z,c,d}
L, ={y,z,c,d}
L ={x,y,c,d}
L, ={x,y,c,d}
Ly, ={x,y,z,c,d}
Ly, ={x}

L, ={}

CS 412/413 Spring 2006 Introduction to Compilers 10

Generalization

* Live variable analysis and available copies analysis
are similar:
— Define some information that they need to compute
— Build constraints for the information
— Solve constraints iteratively:

* The information always “increases” during iteration
« Eventually, it reaches a fixed point.

e We would like a general framework
— Framework applicable to many other analyses

— Live variable/copy propagation = instances of the
framework

€S 412/413 Spring 2006 Introduction to Compilers 1

Dataflow Analysis Framework

¢ Dataflow analysis = a common framework for many

compiler analyses
— Computes some information at each program point

— The computed information characterizes all possible
executions of the program

¢ Methodology:

— Describe information about the program using an
algebraic structure called lattice

— Build constraints which show how computation and
control flow modify the information in the lattice

— lteratively solve constraints

€S 412/413 Spring 2006 Introduction to Compilers 12

Lattices and Partial Orders

e Lattice definition uses the concept of
partial order relation

* A partial order (P,Z) consists of:
—Aset P
— A partial order relation E which is:

1. Reflexive X E x
2. Anti-symmetric XEYy,yEXx = x=y
3. Transitive: XxXEy,yEz = xEz

e Called “partial order” because not all elements are
comparable

€S 412/413 Spring 2006 Introduction to Compilers 13

Lattices and Lower/Upper Bounds

¢ Lattice definition uses the concept of

lower and upper bounds

e If (P,E) is a partial order and S < P, then:
1. x€P is a lower bound of S if x = vy, for all yeS
2. x€P is an upper bound of S if y E x, for all yeS

¢ There may be multiple lower and upper bounds of the
same set S

€S 412/413 Spring 2006 Introduction to Compilers 14

LUB and GLB

¢ Define least upper bounds (LUB) and greatest lower
bounds (GLB)
 If (P,£) is a partial order and S < P, then:
1. xeP is GLB of S if:
a) x is a lower bound of S
b) y £ x, for any lower bound y of S

2. x€Pis a LUB of S if:
a) x is an upper bound of S
b) x £y, for any upper bound y of S

e ... are GLB and LUB unique?

CS 412/413 Spring 2006 Introduction to Compilers 15

Lattices
* A pair (L,E) is a lattice if:
1. (L,E) is a partial order
2. Any finite subset S < L has a LUB and a GLB
e Can define two operators in lattices:
1. Meet operator: x My = GLB({x,y})
2. Join operator: x L'y = LUB({x,y})

e Meet and join are well-defined for lattices

CS 412/413 Spring 2006 Introduction to Compilers 16

Complete Lattices

* A pair (L,E) is a complete lattice if:
1. (L,E) is a partial order
2. Any subset S < L has a LUB and a GLB

e Can define meet and join operators

* Can also define two special elements:
1. Bottom element: L = GLB(L)
2. Top element: T = LUB(L)

All finite lattices are complete

* Alternative notation for a lattice: (L, =, 1, T)

€S 412/413 Spring 2006 Introduction to Compilers 17

More About Lattices

* In a lattice (L, £), the following are equivalent:

1.xEy
2.xuy=y
3.xMmy=x

* Note: meet and join operations were defined using
the partial order relation

€S 412/413 Spring 2006 Introduction to Compilers 18

Proof

e Prove that x E y implies x My = x:

— vy is a lower bound of {x,y} because:
 yis less than y by reflexivity
* x is less than y by hypothesis

— Take another lower bound z of {x,y}
¢ Then z is less than x, y
* In particular, z is less than x
* So x is the least upper bound

e Prove that x My = x implies x E y :
— By hypothesis, x is a lower bound of {x,y}
— So x is less than y

€S 412/413 Spring 2006 Introduction to Compilers 19

Properties of Meet and Join

e The meet and join operators are:

1. Associative (xmy)nz=xn(ynz)
2. Commutative XMy =ynx
3. ldempotent: X T X=X

e Property: If “[” is an associative, commutative, and
idempotent operator, then the relation “=” defined as x
Cyiff x MMy =y is a partial order

€S 412/413 Spring 2006 Introduction to Compilers 20

Example Lattice

e Consider S = {a,b,c} and its power set P =
{0, {a}, {v}, {c}, {a,v}, {b,c}, {a,c} {a,b,c}}

e Define partial order as set inclusion: XSY
— Reflexive X €Y

— Anti-symmetric XY, YEX = X=Y
— TransitveX €Y, YSZ = XcZ
o Also, for any subset L < P, there exists LUB(L) and

GLB(L)

* Therefore (P,S) is a (complete) lattice

CS 412/413 Spring 2006 Introduction to Compilers 21

Hasse Diagrams

¢ Hasse diagram = {a,b,c}
graphical
representation of a {a,b} {a,c} A{b,c}

lattice where x is |
below y when x = y {a} b} {c}

and x Z y \|/
O

CS 412/413 Spring 2006 Introduction to Compilers 22

Power Set Lattice

e Partial order: =
(set inclusion)

* Meet: N {a,b,c}

(set intersection)

|
) {a,p} {a,c} Ab,c}
e Join: U

(set union) |>< >< |

e Top element: {a,b,c} tak {b} {c}
(whole set) \ | /
O

e Bottom element: [J
(empty set)

€S 412/413 Spring 2006 Introduction to Compilers 23

Reversed Lattice

* Partial order: 2
(set inclusion)

e Meet: U O
(set union) |
' {a} {b} {c}
e Join: N

(set intersection) |>< >< |

b
+ Top clement: O {a,b} {a,c} {b,c}

(empty set) \ | /

{a,b,c}

* Bottom element: {a,b,c}
(whole set)

€S 412/413 Spring 2006 Introduction to Compilers 2

Lattices in Dataflow Analysis

¢ Information computed by live variable analysis and
available copies can be expressed as elements of
lattices

 Live variables:
— Vis the set of all variables in the program
— P the power set of V
— Lattice: (2Y, 2, U, 0)
— sets of live variables are elements of this lattice
— Information propagates backward

€S 412/413 Spring 2006 Introduction to Compilers 25

Lattices in Dataflow Analysis

» Copy Propagation:
-V is the set of all variables in the program

-V x V the cartesian product representing all possible
copy instructions

- P the power set of V x V
(2%, c, N, VxV)
- sets of available copies are lattice elements

- information propagates forward

€S 412/413 Spring 2006 Introduction to Compilers 26

Using Lattices

e Assume information we want to compute in a
program is expressed using a lattice L

e To compute the information at each program point
we need to determine how the lattice information
changes:

— At each CFG node, due to the computation in that node
— At join/split points in the control flow

CS 412/413 Spring 2006 Introduction to Compilers 27

Transfer Functions
* Dataflow analysis defines a transfer function
F,: L = L for each CFG node in the program

e Let in[n] be the information before CFG node n, and
out [n] be the information after n

* Forward analysis: out[n] = F, (in[nl)
* Backward analysis: in[n] = F, (out[n])
* Transfer functions must be monotonic:

— ForallA,BinL:Ac B implies F (A) = F (B)

CS 412/413 Spring 2006 Introduction to Compilers 28

Merge Operation

» Dataflow analysis uses the meet operation to merge
dataflow information at split/join points in the control flow

e Forward analysis: in[n] = 'l {out[n] | n'lpred(n)}

e Backward analysis: out[n] = Il {in[n] | n'Usucc(n)}

€S 412/413 Spring 2006 Introduction to Compilers 29

Dataflow Analysis Framework

e A dataflow analysis framework consists of:

— A lattice (L, &, 11, T) where L is the dataflow
information, & is the ordering, M is the meet operation,
and T is the top element

 Lattice must have finite height

— Transfer functions F_ : L — L for each CFG node n
 Transfer functions must be monotonic

— Boundary dataflow information d,
* Before CFG entry node for a forward analysis
o After CFG exit node for a backward analysis

€S 412/413 Spring 2006 Introduction to Compilers 30

