CS412/413

Introduction to Compilers Radu Rugina

Lecture 24: Dataflow Analysis Frameworks 29 Apr 06

Derive Constraints Constraints for each if (c) L_2 instruction: x = y+1 L_4 y = 2*zin[I]=(out[I]-def[I]) L_5 if (d) U use[I] x = y+zConstraints for L_8 L₉ control flow: L_{10} $\mathsf{out}[\mathsf{B}] = \underset{\mathsf{B}' \,\in\, \mathsf{succ}(\mathsf{B})}{\mathsf{U}} \mathsf{in}[\mathsf{B}']$ L_{11} CS 412/413 Spring 2006 Introduction to Compilers

Generalization

- Live variable analysis and available copies analysis are similar:
 - $\boldsymbol{\mathsf{-}}$ Define some information that they need to compute
 - Build constraints for the information
 - Solve constraints iteratively:
 - The information always "increases" during iteration
 - Eventually, it reaches a fixed point.
- We would like a general framework
 - Framework applicable to many other analyses
 - Live variable/copy propagation = instances of the framework

CS 412/413 Spring 2006 Introduction to Compilers 11

Dataflow Analysis Framework

- Dataflow analysis = a common framework for many compiler analyses
 - $\boldsymbol{\mathsf{-}}\xspace$ Computes some information at each program point
 - The computed information characterizes all possible executions of the program
- Methodology:
 - Describe information about the program using an algebraic structure called lattice
 - Build constraints which show how computation and control flow modify the information in the lattice
 - Iteratively solve constraints

CS 412/413 Spring 2006 Introduction to Compilers 12

Lattices and Partial Orders

- Lattice definition uses the concept of partial order relation
- A partial order (P,⊑) consists of:
 - A set P
 - A partial order relation ⊑ which is:
 - 1. Reflexive $x \sqsubseteq x$
 - 2. Anti-symmetric $x \sqsubseteq y, y \sqsubseteq x \Rightarrow x = y$ 3. Transitive: $x \sqsubseteq y, y \sqsubseteq z \Rightarrow x \sqsubseteq z$
- Called "partial order" because not all elements are comparable

CS 412/413 Spring 2006

Introduction to Compilers

13

15

17

Lattices and Lower/Upper Bounds

- Lattice definition uses the concept of lower and upper bounds
- If (P, \sqsubseteq) is a partial order and $S \subseteq P$, then:
 - 1. $x \in P$ is a lower bound of S if $x \subseteq y$, for all $y \in S$
 - 2. $x \in P$ is an upper bound of S if $y \sqsubseteq x$, for all $y \in S$
- $\bullet\,$ There may be multiple lower and upper bounds of the same set S

CS 412/413 Spring 2006

Introduction to Compilers

LUB and GLB

- Define least upper bounds (LUB) and greatest lower bounds (GLB)
- If (P, \sqsubseteq) is a partial order and $S \subseteq P$, then:
 - 1. x∈P is GLB of S if:
 - a) x is a lower bound of S
 - b) $y \subseteq x$, for any lower bound y of S
 - 2. x∈P is a LUB of S if:
 - a) x is an upper bound of S
 - b) $x \sqsubseteq y$, for any upper bound y of S
- ... are GLB and LUB unique?

CS 412/413 Spring 2006

tion to Compilers

Lattices

- A pair (L,⊑) is a lattice if:
 - 1. (L,⊑) is a partial order
 - 2. Any finite subset $S \subseteq L$ has a LUB and a GLB
- Can define two operators in lattices:
 - 1. Meet operator: $x \sqcap y = GLB(\{x,y\})$
 - 2. Join operator: $x \sqcup y = LUB(\{x,y\})$
- · Meet and join are well-defined for lattices

CS 412/413 Spring 2006

Introduction to Compilers

16

18

Complete Lattices

- A pair (L,⊑) is a complete lattice if:
 - 1. $(L, \stackrel{\triangleright}{\sqsubseteq})$ is a partial order
 - 2. Any subset $S \subseteq L$ has a LUB and a GLB
- Can define meet and join operators
- Can also define two special elements:
- 1. Bottom element: $\bot = GLB(L)$
- 2. Top element: $\top = LUB(L)$
- All finite lattices are complete
- Alternative notation for a lattice: (L, ⊑, □, ⊤)

CS 412/413 Spring 2006

Introduction to Compilers

More About Lattices

- In a lattice (L, \sqsubseteq), the following are equivalent:
 - 1. x ⊑ y
 - $2.\;x\mathrel{\sqcup} y=y$
 - 3. $x \sqcap y = x$
- Note: meet and join operations were defined using the partial order relation

CS 412/413 Spring 2006

Introduction to Compilers

3

Proof

- $\bullet \ \ \mathsf{Prove that} \ \mathsf{x} \sqsubseteq \mathsf{y} \ \mathsf{implies} \ \mathsf{x} \ \sqcap \ \mathsf{y} = \mathsf{x} \mathsf{:}$
 - y is a lower bound of {x,y} because:
 - y is less than y by reflexivity
 - x is less than y by hypothesis
 - Take another lower bound z of {x,y}
 - Then z is less than x, v
 - In particular, z is less than x
 - So x is the least upper bound
- Prove that $x \sqcap y = x$ implies $x \sqsubseteq y$:
 - By hypothesis, x is a lower bound of $\{x,y\}$
 - So x is less than y

CS 412/413 Spring 2006

Properties of Meet and Join

• The meet and join operators are:

1. Associative $(x \sqcap y) \sqcap z = x \sqcap (y \sqcap z)$

2. Commutative $x \sqcap y = y \sqcap x$

3. Idempotent: $x \sqcap x = x$

• Property: If " \square " is an associative, commutative, and idempotent operator, then the relation "⊑" defined as x

 \sqsubseteq y iff x \sqcap y = y is a partial order

CS 412/413 Spring 2006

Introduction to Compilers

Example Lattice

- Consider $S = \{a,b,c\}$ and its power set P = $\{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}, \{a,c\} \{a,b,c\}\}\$
- Define partial order as set inclusion: X⊆Y
 - Reflexive $X \subseteq Y$
 - $\begin{array}{ll} \text{ Anti-symmetric } & X \subseteq Y, \ Y \subseteq X \ \Rightarrow \ X = Y \\ \text{ Transitive } X \subseteq Y, \ Y \subseteq Z \ \Rightarrow \ X \subseteq Z \end{array}$
- Also, for any subset $L \subseteq P$, there exists LUB(L) and GLB(L)
- Therefore (P,⊆) is a (complete) lattice

CS 412/413 Spring 2006

Introduction to Compilers

21

23

Hasse Diagrams

• Hasse diagram = graphical representation of a lattice where x is below y when $x \subseteq y$

 $\{a,b\}$ {a,c} {b}

22

24

{a,b,c}

CS 412/413 Spring 2006

and $x \neq y$

Introduction to Compilers

Power Set Lattice

{a,b,c}

 $\{a,c\}$

0

- Partial order: ⊆ (set inclusion)
- Meet: ∩ (set intersection)
- Join: ∪ (set union)
- Top element: {a,b,c} (whole set)
- Bottom element: ∅ (empty set)

CS 412/413 Spring 2006

Introduction to Compilers

Reversed Lattice

- Partial order: ⊇ (set inclusion)
- Meet: ∪ (set union)
- loin: (set intersection)
- Top element: Ø (empty set)
- Bottom element: {a,b,c} (whole set)

CS 412/413 Spring 2006

Introduction to Compilers

4

Lattices in Dataflow Analysis

- Information computed by live variable analysis and available copies can be expressed as elements of lattices.
- · Live variables:
 - $-\ \mbox{V}$ is the set of all variables in the program
 - P the power set of V
 - Lattice: (2^{V} , \supseteq , \cup , \varnothing)
 - sets of live variables are elements of this lattice
 - Information propagates backward

CS 412/413 Spring 2006

Introduction to Compilers

OF.

27

29

Lattices in Dataflow Analysis

- Copy Propagation:
 - V is the set of all variables in the program
 - $V \times V$ the cartesian product representing all possible copy instructions
 - P the power set of $V \times V$
 - ($2^{V\times V}$, \subseteq , \cap , $V\times V$)
 - sets of available copies are lattice elements
 - information propagates forward

CS 412/413 Spring 2006

Introduction to Compilers

Using Lattices

- Assume information we want to compute in a program is expressed using a lattice L
- To compute the information at each program point we need to determine how the lattice information changes:
 - At each CFG node, due to the computation in that node
 - At join/split points in the control flow

CS 412/413 Spring 2006

Introduction to Compilers

Transfer Functions

- Dataflow analysis defines a transfer function $F_n:L\to L$ for each CFG node in the program
- Let in[n] be the information before CFG node n, and out [n] be the information after n

Forward analysis: out[n] = F_n (in[n])

• Backward analysis: in[n] = F_n (out[n])

• Transfer functions must be monotonic:

– For all A, B in L : A \sqsubseteq B implies $F_n(A) \sqsubseteq F_n(B)$

CS 412/413 Spring 2006

Introduction to Compilers

Merge Operation

- Dataflow analysis uses the meet operation to merge dataflow information at split/join points in the control flow
- Forward analysis: in[n] = □ {out[n'] | n'∈pred(n)}
- Backward analysis: out[n] = Π {in[n'] | n' \in succ(n)}

CS 412/413 Spring 2006

Introduction to Compilers

Dataflow Analysis Framework

- A dataflow analysis framework consists of:
 - A lattice (L, $\sqsubseteq,$ $\sqcap,$ $\top)$ where L is the dataflow information, \sqsubseteq is the ordering, \sqcap is the meet operation, and \top is the top element
 - Lattice must have finite height
 - Transfer functions $F_{\tt n}:L\to L$ for each CFG node n
 - Transfer functions must be monotonic
 - Boundary dataflow information d_0
 - Before CFG entry node for a forward analysis
 - After CFG exit node for a backward analysis

CS 412/413 Spring 2006

Introduction to Compilers

5

30