CS412/413

Introduction to Compilers
Radu Rugina

Lecture 23: Live Variable Analysis
26 Mar 06

Control Flow Graphs

 Control Flow Graph (CFG) = graph representation of
computation and control flow in the program

— framework to statically analyze program control-flow

e In a CFG:
— Nodes are basic blocks; they represent computation
— Edges characterize control flow between basic blocks

¢ Can build the CFG representation either from the high
IR or from the low IR

€S 412/413 Spring 2006 Introduction to Compilers 2

From Three-Address Code to CFG

label L1
fjump ¢ L2
x=y+1;
y =2 % z;
fjump d L3
label L3
z=1;
jump L1
label L2
z = X;

CS 412/413 Spring 2006 Introduction to Compilers

Basic Blocks

label L1
fjump ¢ L2
x=y+1;
y =2 % z;
fjump d L3
label L3
z=1;
jump L1
label L2
z = X;

CS 412/413 Spring 2006 Introduction to Compilers 4

Using CFGs

Next: use CFG representation to statically extract
information about the program
— Reason at compile-time

— About the run-time values of variables and expressions
in all program executions

Extracted information example: live variables

Idea:
— Define program points in the CFG

— Reason statically about how the information flows
between these program points

€S 412/413 Spring 2006 Introduction to Compilers

Program Points

e Two program points for each instruction:
— There is a program point before each instruction
— There is a program point after each instruction

Point before 0

x =y+1

Point after

¢ In a basic block:

— Program point after an instruction = program
point before the successor instruction

€S 412/413 Spring 2006 Introduction to Compilers 6

Program Points: Example

* Multiple successor CFG o
nodes: x =y+1

— control will flow to one of the e
successor program points y =2%z
— It is not statically known which

. L]
one if (d)
L]

 Similar situation when there
. L]
are multiple predecessor CFG X = ytz
nodes °
¢ How does information o
propagate between program "
points? °
CS 412/413 Spring 2006 Introduction to Compilers 7

Flow of Extracted Information

¢ Question 1: how does information “ :.y+1
flow between the program points o
before and after an instruction? y =2%z
L]
* Question 2: how does information if (d)
flow between different CFG nodes? hd
L]
e ... in other words: x :.erZ
Q1: what is the effect of computation?
Q2: what is the effect of control flow? L4 1
z=
L]
CS 412/413 Spring 2006 Introduction to Compilers

Using CFGs

To extract information: reason about how it
propagates between program points

¢ Rest of this lecture: how to use CFGs to compute
information at each program point for:

— Live variable analysis, which computes live variables are
live at each program point

— Copy propagation analysis, which computes the variable
copies available at each program point

CS 412/413 Spring 2006 Introduction to Compilers 9

Live Variable Analysis

Using the CFG structure to perform live variable analysis
— A variable is live if its value might be needed later

— Goal: compute all live variables at each program point

For each CFG node n, consider:
— in[n] = live variables at program point before n
— out [n] = live variables at program point after n

* CFG node can be either:
— An instruction |
— A basic block B

CS 412/413 Spring 2006 Introduction to Compilers 10

How to Compute Liveness?

¢ Answer question 1: for each CFG in[n]
node n, what is the relation n
between in[n] and out[n] ? out [n]

¢ Answer question 2: for each CFG
node n with successors n,, ..., n,,
what is the relation between
out[n] and in[n,], ..., in[nJ7

n
out [n]

€S 412/413 Spring 2006 Introduction to Compilers 1

Part 1: Analyze Instructions

¢ Question: what is the relation between in[n]
sets of live variables before and after a n
node? out [n]
e Examples:
in[n] =7 in[n] = 7 in[n] = 7
X = y+z X = y+z X = x+z

out[n] = {z} outln] = {x,t} out[n] = {x,t}
e ... is there a general rule?

€S 412/413 Spring 2006 Introduction to Compilers 12

Analyze Instructions

e Yes: knowing variables live after n, we

can compute variables live before n : in[n]
— All variables live after n are also live before n
n, unless n defines (writes) them out [n]

— All variables that n uses (reads) are also live
before instruction n

e Mathematically:
in[n] = (out[n] — def[n]) U use[n]

where:
— def [n] = variables defined (written) by node n
— use[n] = variables used (read) by node n

€S 412/413 Spring 2006 Introduction to Compilers 13

Computing Use/Def

¢ Compute use[n] and def [n] for each instruction:

if nis x =y OP z : useln] = {y, z} def[n] = {x}
ifnisx=0Py : useln] = {y} def[n] = {x}
ifnisx =y : use[n] = {y} def[n] = {x}
if n is if (x) : use[n] = {x} def[n] = {}
if n is return x : use[n] = {x} def[n] = {}
if nis x = f(y,,..., y) :

use[I] = {y,,..., y,} def[I] = {x}

(For now, ignore load and store instructions)

€S 412/413 Spring 2006 Introduction to Compilers 14

Example

¢ Example: three consecutive instructions
I1, I2, I3:
Livel = in[I1]

Livel
Live2 = out[I1] = in[I2] 11 x = y+
Live3 = out[I2] = in[I3] Live?
Live4 = out[I3] 1oy =2%z
¢ Relation between Live sets: Live3
Livel = (Live2-{x}) U {y} 13 if (d)
Live2 = (Live3-{y}) U {z} Lived
Live3 = (Live4-{}) U {d}
CS 412/413 Spring 2006 Introduction to Compilers 15

Backward Flow

¢ Relation:
in[I] = (out[I] — def[I]) U uselIl]

* Can compute in[I] if we know out[I]

e The information flows backward
in[I]
o
out [I]

CS 412/413 Spring 2006 Introduction to Compilers 16

Part 2: Analyze Control Flow

n
out [n]

¢ Question: for each node n with

successor blocks ny, ..., n,, what is
the relation between out [n] and
in[n,], ..., in[nJ7?
e Examples:
{x,y,z}
{x,z} {x,y} {x}
n, n, o

e What is the general rule?

€S 412/413 Spring 2006 Introduction to Compilers 17

Analyze Control Flow

e Rule: A variables is live at a program point if it
is live at one of the successor points

e Characterizes all possible program executions

n
out [n]

e Mathematically:

out[n] = U in[n’]
n' Osucc(n)

e Again, information flows backward: from successors
n’ of n, to n itself

€S 412/413 Spring 2006 Introduction to Compilers 18

Constraint System

¢ Put parts together: start with CFG and derive a system

of constraints between live variable sets:

out[n] = V) in[n’]
n' O succ(n)

{in[n] = (out[n] — def[n]) U useln] for each noden
¢ Solve constraints:
— Start with empty sets of live variables

— lteratively apply constraints
— Stop when we reach a fixed point

€S 412/413 Spring 2006 Introduction to Compilers

Constraint Solving Algorithm

For all CFG nodes n: in[n] = out[n] = [
worklist = all “return” (exit) nodes

while (worklist is not empty)
remove n from worklist
in[n] = (out[n] — def[n]) U use[n]

for each predecessor n':
out[n'] = out[n'] U in[n]
if (out[n’] changed)

add n’ to worklist

€S 412/413 Spring 2006 Introduction to Compilers 20

Example: Live Variable Analysis

def = {}, use

def = {x}, use
def = {y}, use =
def = {}, use =

def = {x}, use =

def = {x}, use =

CS 412/413 Spring 2006

Introduction to Compilers

Copy Propagation
e Goal: determine copies available at each program
point

¢ Information: set of copies <x=y> at each point

¢ For each CFG node:
— in[n] = copies available at program point before n
—out [n] = copies available at program point after n

CS 412/413 Spring 2006 Introduction to Compilers 22

Copy Propagation Analysis

e Knowing in[n], we can compute out [n]:

— Remove from in[n] all copies <u=v> if
variable u or v is written by n n

in[n]
— Keep all other copies from in[n] out [n]
— If nis of the form x=y, add <x=y> to out [n]

e A copy is available at point before n if it is
available at the end of all predecessor

program points o

et
out [n,]

out [n,]

in[n]
n

€S 412/413 Spring 2006 Introduction to Compilers

Example: Copy Propagation

x=y
z=t

e What are the available
copies at the end of the
program?

x=y?

z=t?

x=z7

€S 412/413 Spring 2006 Introduction to Compilers 2

Summary

e Extracting information about live variables, available
copies:
— Define the required information
— Build constraints for instructions/control flow
— Solve constraints to get needed information

e ...is there a general framework?

— Yes: dataflow analysis!

€S 412/413 Spring 2006 Introduction to Compilers 25

