CS412/413

Introduction to Compilers
Radu Rugina

Lecture 22: Control Flow Graphs
17 Mar 06

Optimizations

e Code transformations to improve program
— Mainly: improve execution time
— Also: reduce program size

e Can be done at high level or low level
— E.g. constant folding

* Optimizations must be safe

— Execution of transformed code must yield same results as
the original code for all possible executions

€S 412/413 Spring 2004 Introduction to Compilers 2

Optimization Safety

* Safety of code transformations usually requires certain
information which may not explicit in the code

e Example: dead code elimination
(1) x=y+1;

(2) y=2=x*z;
3) x=y+z;
1) z=1;
(B) z=x;

e What statements are dead and can be removed?

CS 412/413 Spring 2004 Introduction to Compilers

Optimization Safety

* Safety of code transformations usually requires certain
information which may not explicit in the code
e Example: dead code elimination
)
(2) y=2=x*z;
3) x=y+z;
(4)
(B) z=x;
* Need to know what values assigned to x at (1) is never used
later (i.e. x is dead at statement (1))
— Obvious for this simple example (with no control flow)
— Not obvious for complex flow of control

CS 412/413 Spring 2004 Introduction to Compilers 4

Dead Code Example

e Add control flow:

x =y +1;

y =2 % z;

if (d) x = y+z;
z = 1;

zZ = X;

e Is‘x = y+1' dead code? Is ‘z = 1’ dead code?

€S 412/413 Spring 2004 Introduction to Compilers

Dead Code Example

¢ Add control flow to example:

x =y +1;
y =2 % z;
if (d) x = y+z;

zZ = X;

* Statement x = y+1 is not dead code!

¢ On some executions, value is used later

€S 412/413 Spring 2004 Introduction to Compilers 6

Dead Code Example

¢ More complex control flow:

while (c) {
x=y+1
y=2x*z;
if (d) x = y+z;
z=1;

}

Z = X;

e Is‘x = y+1’ dead code? Is ‘'z = 1’ dead code?

€S 412/413 Spring 2004 Introduction to Compilers 7

Dead Code Example

¢ Add a while loop:

while (c) {
x=y+1;

y = 2 % zj
if(d)\@
z=1;

» Statement ‘x = y+1' not dead (as before)
e Statement ‘z = 1’ not dead either!

}
z

= x;

¢ On some executions, value from ‘z=1" is used later

€S 412/413 Spring 2004 Introduction to Compilers 8

Three-Address Code

* Much harder to understand code in three-address form:
label L1
fjump ¢ L2
x=y+1;

y=2x Z;\
fjump d L3 Are these

X = y+z; statements
label L3 dead?
z =1;

jump L1

label L2

z = Xx;

CS 412/413 Spring 2004 Introduction to Compilers 9

Three-Address Code

* Much harder to understand code in three-address form:

label L1

fjump ¢ L2

x=y+1;

y =2 % z;

fjump d L3 It is harder to analyze
X = y+z; flow of control
label L3 in low level code
z =1;

jump L1

label L2

z = Xx;

CS 412/413 Spring 2004 Introduction to Compilers 10

Optimizations and Control Flow

e Applying optimizations requires information
— Dead code elimination: need to know if variables are dead
when assigned values

¢ Required information:
— Not explicit in the program
— Must compute it statically (at compile-time)
— Must characterize all dynamic (run-time) executions

e Control flow makes it hard to extract information
— Branches and loops in the program

— Different executions = different branches taken, different
number of loop iterations executed

€S 412/413 Spring 2004 Introduction to Compilers 1

Control Flow Graphs

 Control Flow Graph (CFG) = graph representation of
computation and control flow in the program

— framework to statically analyze program control-flow

¢ Nodes are single instructions, edges describe flow of
control.
— Common optimization: use basic blocks as CFG nodes

— basic blocks = sequences of consecutive non-branching
statements

€S 412/413 Spring 2004 Introduction to Compilers 12

CFG Example

F
rogram Control Flow Graph

Xx=z-2;

y =2 *z; Bilx = z-2;
if (@ o y = 2%z
X = x+1; if (c)
y = y+1; T F
} 5 - / \
o |x = x+1; x = x-1; Bs
else { - il I
x = x1; y = y+i; y =y1;
y =34
}
z = xty;
CS 412/413 Spring 2004 Introduction to Compilers 13

Basic Blocks
¢ Basic block = sequence of consecutive statements
such that:

— Control enters only at beginning of sequence
— Control leaves only at end of sequence

incoming control

NS

a = at+l;

b = c*a;
d = c-b;
71N

outgoing control

* No branching in or out in the middle of basic blocks

€S 412/413 Spring 2004 Introduction to Compilers 14

Computation and Control Flow

Control Flow Graph

Multiple Program Executions

+ CFG models all Control Flow Graph
program executions
B, X = z-2;
¢ Possible execution= y = 2%z;
path in the graph if ()
T
Multiple paths = /

/|

multiple possible Bolx = x+1; x = x-1; B3
program executions y = y+i; y = y-1;
B,

B, X = z-2;
* Basic Blocks =
. y = 2%z;
Nodes in the graph = if (¢)
computation in the T F
program / \
B, |x = x+1; x = x-1; B
* Edges in the graph = y = y+1; y = y-1;
control flow in the
program
CS 412/413 Spring 2004 Introduction to Compilers 15
Execution 1
¢ CFG models all Control Flow Graph
program executions
B, X = z-2;
¢ Possible execution= y = 2%z;
path in the graph if (o)

T
Execution 1: /

— Cis true

I
~<
s
-

— Program executes
basic blocks B, B,,
B,

€S 412/413 Spring 2004 Introduction to Compilers 17

CS 412/413 Spring 2004 Introduction to Compilers 16
Execution 2
¢ CFG models all Control Flow Graph
program executions
B, X = z-2;
¢ Possible execution= y = 2%z;
path in the graph if (o)
\F\
¢ Execution 2: B
— Cis false x = x71; 5
— Program executes y =yl
basic blocks B, Bs,
B,

€S 412/413 Spring 2004 Introduction to Compilers 18

Edges Going Out

¢ Multiple outgoing edges

* Basic block executed next may be one of the
successor basic blocks

* Each outgoing edge = outgoing flow of control in
some execution of the program

Basic
Block
PR TN

outgoing edges

€S 412/413 Spring 2004 Introduction to Compilers

Edges Coming In

e Multiple incoming edges

e Control may come from any of the successor basic
blocks

e Each incoming edge = incoming flow of control in
some execution of the program

incoming edges
N

Basic
Block

€S 412/413 Spring 2004 Introduction to Compilers 20

Building the CFG

* Build CFG from AST / High IR
— Construct CFG for each High IR node

¢ Build CFG for three-address IR code

— Analyze jump and label statements

CS 412/413 Spring 2004 Introduction to Compilers 21

From AST to CFG

* CFG(S)= flow graph of AST statement S
» CFG (S) is single-entry, single-exit graph:
— one entry node (basic block)
— one exit node (basic block)

CFG(S) =

* Recursively define CFG(S)

CS 412/413 Spring 2004 Introduction to Compilers 22

CFG for Block Statement

e CFG(S1;S2;...;SN) =

€S 412/413 Spring 2004 Introduction to Compilers 23

CFG for If-then-else Statement

e CFG (if (E) S1else S2)

T— Empty

basic block

€S 412/413 Spring 2004 Introduction to Compilers 2

CFG for If-then Statement

< CFG(if(E)S)

€S 412/413 Spring 2004 Introduction to Compilers 25

CFG for While Statement

o CFG for: while (e) S

€S 412/413 Spring 2004 Introduction to Compilers 26

Recursive CFG Construction

e Nested statements: recursively construct CFG while
traversing IR nodes

e Example:

while (c) {
x=y+1;
y=2x*z;
if (d) x = y+z;
z=1;

}

Z = X;

CS 412/413 Spring 2004 Introduction to Compilers 27

Recursive CFG Construction

e Nested statements: recursively construct CFG while
traversing IR nodes

while (c) {
x=y+ L CFG(while)
y=2x*z;
if (d) x = y+z; CFG(z=x)
z=1;

}

zZ = X;

CS 412/413 Spring 2004 Introduction to Compilers 28

Recursive CFG Construction

¢ Nested statements: recursively construct CFG while
traversing IR nodes

while (c) {
x=y+1;
y =2 %z CFG(body) ||F
if (d) x = y+z;
z=1;

}

z = x;

CS 412/413 Spring 2004 Introduction to Compilers 29

Recursive CFG Construction

¢ Nested statements: recursively construct CFG while
traversing IR nodes

while (c) {
x=y+1;
y =2 % z;
if (d) x = y+z;
z=1;

}

z = X;

€S 412/413 Spring 2004 Introduction to Compilers 30

Building Basic Blocks

while (c) {
x=y+1;
y =2 % z;
if (d) x =
z =1;
z = X;
CS 412/413 Spring 2004 Introduction to Compilers 31

From Three-Address Code to CFG

label L1
¢ Identify control in three- £jump ¢ L2
address code: x=y+ 1
- !dentify.label and jump y=2%z;
instructions .
fjump d L3
X = ytz;
label L3
z = 1;
jump L1
label L2
z = x;
CS 412/413 Spring 2004 Introduction to Compilers 32

From Three-Address Code to CF

()

label L1
fjump ¢ L2
= + 1;

e Group together to form CFG
nodes:

— Labels and successor instructions [—
;

— Unconditional jumps and
predecessor instructions

-]
g
S
o
[l
W

X = y+z;
— Otherwise, one instruction per
label L3
node
z = 1;
jump L1
label L2
zZ = X;
CS 412/413 Spring 2004 Introduction to Compilers 33

e Group together to form CFG

From Three-Address Code to CFG

nodes:
— Labels and successor instructions

— Unconditional jumps and
predecessor instructions

— Otherwise, one instruction per
node

label L2

Z = X;

CS 412/413 Spring 2004 Introduction to Compilers 34

From Three-Address Code to CFG

¢ Group together to form
CFG nodes:
— Labels and successor
instructions
— Unconditional jumps and
predecessor instructions

— Otherwise, one instruction
per node

€S 412/413 Spring 2004 Introduction to Compilers 35

