CS412/413

Introduction to Compilers
Radu Rugina

Lecture 20: Implementing Objects
13 Mar 06

Code Generation for Objects

¢ Methods
— Generating method code
— Generating method calls (dispatching)
— Constructors and destructors

* Fields
— Memory layout
— Generating code to access fields
— Field alignment

€S 412/413 Spring 2006 Introduction to Compilers

Compiling Methods

e Methods look like functions, are type-checked like
functions...what is different?

e Argument list: implicit receiver argument

 Calling sequence: use dispatch vector instead of jumping to
absolute address

CS 412/413 Spring 2006 Introduction to Compilers 3

The Need for Dispatching

e Example:
class Point { int x, y;
float norm() { return sqrt(x*x+y*y); }
class 3DPoint extends Point { int z;
float norm() { return sqrt(xxx+y*xy+z*z); }
Point p;
if (cond) p = new Point();
else p = new 3DPoint();
int n = p.norm();

* Compiler can't tell what code to run when method is called!

CS 412/413 Spring 2006 Introduction to Compilers

Dynamic Dispatch

* Solution: dispatch vector (dispatch table, selector table...)
— Entries in the table are pointers to method code
— Pointers are computed dynamically

— If T <S, then vector for objects of type S is a prefix of vector
for objects of type T

object object Dispatch method
reference layout Vector code

[p I o] getx
gety i \
norm e—* norm |

|
| | | code |
! N “
CS 412/413 Spring 2006 Introduction to Compilers 5

Why It Works

e If S<T and fis a method of an object of type T, then

— Objects of type S inherit f; f can be overridden by S

— Pointer to f has same index in the DV for type T and S!
* Statically generate code to look up pointer to method f
* Pointer values determined dynamically

Point Point Point Point
reference layout DV code
L e I o] getx

x gety

y norm ®

€S 412/413 Spring 2006 Introduction to Compilers

Why It Works

e If S<T and fis a method of an object of type T, then

— Objects of type S inherit f; f can be overridden by S

— Pointer to f has same index in the DV for type T and S!
* Statically generate code to look up pointer to method f
* Pointer values determined dynamically

Point ColorPoint ColorPoint ColorPoint

reference layout DV code
L e 1 o] getx
x gety
y norm ®
® getc
CS 412/413 Spring 2006 Introduction to Compilers 7

Dispatch Vector Lookup

e Every method has its own small integer index
* Index is used to look up method in dispatch vector

interface A {
C=<B=4A void £(); 0
¥
class B implements A {
A £ void £O {...} 0
| void gO {...} 1
l? f.g,h void h() {..} 2
}
¢ f.g.h,e class C extends B {
void e {...} 3
¥
CS 412/413 Spring 2006 Introduction to Compilers 8

Dispatch Vector Layouts

* Index of f is the same in any

object of type T < A — [Jo
e Virtual methods may have A
multiple implementations
* When subclass overrides — £ 0
method 1
B g
h 2
e To execute a method i:
* Lookup entry i |r? vector) 7 0
* Execute code pointed to by g 1
entry value ¢ h 2
e 3
CS 412/413 Spring 2006 Introduction to Compilers 9

Interfaces, Abstract Classes

* Classes define a type and some values (methods)

e Interfaces are pure object types : no implementation
— no dispatch vector: only a DV layout

e Abstract classes are halfway:
— define some methods
— leave others unimplemented
— no objects (instances) of abstract class

e DV needed only for concrete classes

CS 412/413 Spring 2006 Introduction to Compilers 10

Method Arguments

* Methods have a special variable (Java, C++: this) called the
receiver object

Historically (Smalltalk): method calls thought of as messages
sent to receivers

* Receiver object is (implicit) argument to method

class A { . » .)
int £(int x, int y) ||| compile int £(A this, int x, int y)

I - {..}

€S 412/413 Spring 2006 Introduction to Compilers 1

Static Methods
¢ |In Java or IC, one can declare methods static
— they have no receiver object

* Called exactly like normal functions
— don't need to enter into dispatch vector
— don’t need implicit extra argument for receiver

e Treated as methods as way of getting functions inside the class
scope (access to module internals for semantic analysis)

* Not really methods

€S 412/413 Spring 2006 Introduction to Compilers 12

Code Generation: Dispatch Vectors

¢ Allocate one dispatch vector per class
— Objects of same class execute same method code

* Statically allocate dispatch vectors

Code Generation: Dispatch Vectors

¢ Allocate one dispatch vector per class
— Objects of same class execute same method code

* Statically allocate dispatch vectors

.data
3DPointDV: .long _getx
.long _gety
.long _norm_3DP
.long _getc
€S 412/413 Spring 2006 Introduction to Compilers 14

.data
PointDV: .long _getx
.long _gety
.long _norm_P
€S 412/413 Spring 2006 Introduction to Compilers 13
Example

push $3
0.fo0(2,3); I::> push $2
push %eax

mov (%eax), %ebx

eax ebx [ebx+4] call 4 (kebx)
add $12, Yesp
—» P
fo0e-—»)
foo
code

(object) (DV) (code)

CS 412/413 Spring 2006 Introduction to Compilers 15

Allocation of Objects

* Objects can be stack- or heap-allocated

Code Generation: Allocation

* Heap allocation: o = new Point() push $12 # 2 fields+DV
— Allocate heap space for object call _GC_malloc
mov $PointDV, (%eax)

— Store pointer to dispatch vector add $4, Yesp

+ Stack allocation: sub $12, Y%esp # 3 fields+DV
— Push object on stack mov $PointDV, -4 (%ebp)

— Pointer to DV on stack

€S 412/413 Spring 2006 Introduction to Compilers 17

* Stack allocation: (stack) (static data)
C++) Point p; DVet— getx |
() X gety

y

¢ Heap:
(C++) (stack) (heap) (static data)
Point #p = new Point; |) .;‘_,‘ DVet—» getx |
(Java) x | gety |
Point p = new Point(); y

€S 412/413 Spring 2006 Introduction to Compilers 16

Constructors

e Java, C++: classes can declare object constructors that create
new objects:
new C(x, y, z)

* Other languages (Modula-3): objects constructed by

“new C”; no initialization code
class LenList {
int len; Cell head, tail;
LenList() { len = 0; }
}
* Need to know when objects are constructed
— Heap: new statement
— Stack: at the beginning of their scope (blocks for locals,
procedures for arguments, program for globals)

€S 412/413 Spring 2006 Introduction to Compilers 18

Compiling Constructors

Compiled similarly with methods:
— pseudo-variable “this” passed to constructor
— return value is “this”

1 = new LenList(); LenList() { len = 0; }

LenList$constructor:
push %ebp
mov %esp,%ebp

push $16 # 3 fields+DV
call _GC_malloc
mov $LenList_DV, (%eax)

add $4, Yesp mov 8(%ebp), eax
push %eax mov $0, 4(%eax)
c2§1$ien}15t$constructor mov %ebp, %esp
& » lhesp pop ebp
ret
CS 412/413 Spring 2006 Introduction to Compilers 19

Destructors

* In some languages (e.g. C++), objects can also declare code
to execute when objects are destructed

* Heap: when invoking delete (explicit de-allocation)
 Stack: when scope of variables ends

— End of blocks for local variables

— End of program for global variables

— End of procedure for function arguments

€S 412/413 Spring 2006 Introduction to Compilers 20

Field Offsets

* Offsets of fields from beginning of object known statically, same
for all subclasses

¢ Example:

class Shape {
Point LL /* 4 */ , UR; /* 8 */
void setCorner(int which, Point p);

}

class ColoredRect extends Shape {
Color c; /* 12 */
void setColor(Color c_);

}

« Offsets known for stack and heap allocated objects

CS 412/413 Spring 2006 Introduction to Compilers 21

Field Alignment

* In many processors, a 32-bit load must be to an address divisible
by 4, address of 64-bit load must be divisible by 8

* In rest (e.g. Pentium), loads are 10x faster if aligned -- avoids
extra load

= Fields should be aligned

c

class A { d
int x; char c;
int y; char d;
int z; double e;

N —< — X

CS 412/413 Spring 2006 Introduction to Compilers 22

Summary

Method dispatch accomplished using dispatch vector, implicit
method receiver argument

No dispatch of static methods needed

Inheritance causes extension of fields as well as methods; code can
be shared

Field alignment: declaration order matters!

Each real class has a single dispatch vector in data segment:
installed at object creation or constructor

Analysis more difficult in the presence of objects
Class hierarchy analysis = precisely determine object class

€S 412/413 Spring 2006 Introduction to Compilers 23

