CS412/413

Introduction to Compilers
Radu Rugina

Lecture 14: Objects
22 Feb 06

Records

* Objects combine features of records and abstract data types

* Records = aggregate data structures
— Combine several pieces of data into a higher-level structure
— Their type is the cartesian product of element types
— Need selection operator to access fields
— Pascal records, C structures

e Example: struct {int x; float f; char a,b; } s;
— Struct type: {x:int, f:float, a:char, b:char}
— Selection: s.x = 1; n = s.y;

€S 412/413 Spring 2006 Introduction to Compilers

ADTs

* Abstract Data Types (ADT): separate implementation from
specification

— Specification: provide an abstract type for data
— Implementation: must match abstract type
e Example: linked list

implementation

specification

Cell = { int data; Cell next; }

List = {int len; Cell head, tail; } int length();

int length() { return 1.len; } List append (int d);
int first() { return head.data; } int first(Q;

List rest() { return head.next; } List rest();

List append(int d) { ... }

CS 412/413 Spring 2006 Introduction to Compilers 3

Objects as Records

* Objects have fields class List {

int len;
Cell head, tail;

e ... and methods = code
that manipulates the int length();
data (fields) in the List append(int d);
X int first();
object List rest();
¥
e Hence, objects combine
data and computation
CS 412/413 Spring 2006 Introduction to Compilers

Objects as ADTs

* Specification: public methods and fields of the object

* Implementation: Source code for a class defines the concrete type
(implementation)

class List {
private int len;
private Cell head, tail;

public static int length() {...};
public static List append(int d) {...};
public static int first() {...} ;
public static List rest() {...};

€S 412/413 Spring 2006 Introduction to Compilers 5

Objects

¢ What objects are:

— Aggregate structures which combine data (fields) with
computation (methods)

— Fields have public/private qualifiers (can model ADTs)

* Need special support in many compilation stages:
— Semantic analysis (type checking!)
— Analysis and optimizations
— Implementation, run-time support

* Features:
— inheritance, subclassing, subtyping, dynamic dispatch

€S 412/413 Spring 2006 Introduction to Compilers

Inheritance

¢ Inheritance = mechanism which exposes common features of

different objects

Class B extends class A = “B has the features of A, plus some
additional ones”, i.e., B inherits the features of A

— B is subclass of A; and A is superclass of B

class Point {
float x, y;
float getx();
float gety();

}

class ColoredPoint extends Point {
int color;
int getcolor();

¥

€S 412/413 Spring 2006 Introduction to Compilers

Single vs. Multiple Inheritance

* Single inheritance: inherit from at most one other object (Java)
* Multiple inheritance: may inherit from multiple objects (C+-+)

Inheritance and Scopes

¢ How do objects access fields and methods of:
— Their own?

— Their superclasses?
— Other unrelated objects?

e Each class declarations introduces a scope
— Contains declared fields and methods
— Scopes of methods are sub-scopes

¢ Inheritance implies a hierarchy of class scopes
— If B extends A, then scope of A is a parent scope for B

CS 412/413 Spring 2006 Introduction to Compilers 9

class A { class B {
int a; int b;
int geta(); int getb();
3
class C : A, B {
int c;
int getc();
¥
€S 412/413 Spring 2006 Introduction to Compilers 8
Example
class A { Global symtab
]..nt X;. A | class
111t.f(1nt z) { B [class
int v; ... C | class
¥
¥ A symtab / \ C symtab
class B extends A { X | var int o jvar| A
bool y; ‘ f ‘ fun ‘int - int‘ [z [var [int |
int t;
} B symtab f symtab
‘ y ‘ var ‘ bool‘ ‘ z ‘param‘ int ‘
class C { ‘ t ‘ var ‘ int ‘ ‘ v ‘ var ‘ int ‘
A o; I
int z;

CS 412/413 Spring 2006 Introduction to Compilers 10

Class Scopes

Resolve an identifier occurrence in a method:

— Look for symbols starting with the symbol table of the current
block in that method

¢ Resolve qualified accesses:
— Accesses o.f, where o is an object of class A

— Walk the symbol table hierarchy starting with the symbol table
of class A and look for identifier f

— Special keyword this refers to the current object, start with the
symbol table of the enclosing class

€S 412/413 Spring 2006 Introduction to Compilers 1

Class Scopes

e Multiple inheritance:

— A class scope has multiple parent scopes
— Which should we search first?

— Problem: may find symbol in both parent scopes!

* Overriding fields:
— Fields defined in a class and in a subclass
— Inner declaration shadows outer declaration
— Symbol present in multiple scopes

€S 412/413 Spring 2006 Introduction to Compilers 12

Inheritance and Typing

* Classes have types
— Type is cartesian product of field and method types
— Type name is the class name

e What is the relation between types of parent and
inherited objects?

e Subtyping: if class B extends A then
— Type B is a subtype of A
— Type A is a supertype B

¢ Notation: B < A

€S 412/413 Spring 2006 Introduction to Compilers 13

Subtype = Subset

“A value of type S may be used wherever
a value of type T is expected”

S<T — values(S) O values(T)

values of
type S

values of
type T

€S 412/413 Spring 2006 Introduction to Compilers 14

Subtype Properties

* If type S is a subtype of type T (S < T), then:
A value of type S may be used wherever a value of type T is
expected (e.g., assignment to a variable, passed as argument,
returned from method)

Point x; ColoredPoint < Point
ColoredPoint y; f f
X =y subtype supertype

e Polymorphism: a value is usable at several types

* Subtype polymorphism: code using T's can also use S’s; S objects
can be used as S’s or T’s.

CS 412/413 Spring 2006 Introduction to Compilers 15

Implications of Subtyping

* We don'’t actually know statically the types of objects
— Can be the declared class or any subclasses
— Precise types of objects known only at run-time

* Problem: overriden fields / methods
— Declared in multiple classes in the hierarchy

— We don't know statically which declaration to use at compile
time

CS 412/413 Spring 2006 Introduction to Compilers 16

Virtual Functions

e Virtual functions = methods overriden by subclasses
— Subclasses define specialized versions of the methods

class List {
List next;
int length() { ... }

class LenList extends List {
int n;
int length() { return n; }

€S 412/413 Spring 2006 Introduction to Compilers 17

Virtual Functions

¢ We don’t know what code to run at compile time

List a;

if (cond) { a = new List(); }
else { a = new LenList(); }
a.length()

=> List.length() or LenList.length() ?

* Solution: method invocations resolved dynamically

¢ Dynamic dispatch: run-time mechanism to select the appropriate
method, depending on the object type

€S 412/413 Spring 2006 Introduction to Compilers 18

Objects and Typing

* Objects have types
— ... but also have implementation code for methods

e ADT perspective:
— Specification = typing
— Implementation = method code, private fields
— Objects mix specification with implementation

» Can we separate types from implementation?

€S 412/413 Spring 2006 Introduction to Compilers

Interfaces

Interfaces are pure types; they don’t give any
implementation

implementation e
specification

class MyList implements List {
private int len;
private Cell head, tail;

interface List {
int length();
List append(int d);
int first();

public int length() {...};
List rest();

public List append(int d) {..};
public int first() {...} ; }
public List rest() {...};

€S 412/413 Spring 2006 Introduction to Compilers

Multiple Implementations

¢ Interfaces allow multiple implementations

class SimpleList impl. List {
private int data;
private SimpleList next;
public int length()
{ return 1+next.length()

interface List {
int length();
List append(int); —=—=>
int first(Q;
List rest(); }

class LenList implements List {
private int len;
private Cell head, tail;
private LenList() {...}
public List append(int d) {...}
public int length() { return len; }

CS 412/413 Spring 2006 Introduction to Compilers

¥

Subtyping vs. Subclassing

* Can use inheritance for interfaces
— Build a hierarchy of interfaces

interface A {...}
interface B extends A {...}

* Objects can implement interfaces

class C implements A {...}

* Subtyping: interface inheritance
* Subclassing: object (class) inheritance
— Subclassing implies subtyping

CS 412/413 Spring 2006 Introduction to Compilers

Abstract Classes

¢ Classes define types and some values (methods)
¢ Interfaces are pure object types

¢ Abstract classes are halfway:
— define some methods
— leave others unimplemented
— no objects (instances) of abstract class

€S 412/413 Spring 2006 Introduction to Compilers

Subtypes in Java

interface I, class C class C;
extends |, { ... } implements | { ... } extends C,
I | G,
| | |
I, C C
L <l c<li C, <G

€S 412/413 Spring 2006 Introduction to Compilers

Subtyping Properties Subtype Hierarchy

¢ Introduction of subtype relation creates a hierarchy

e Subtype relation is reflexive: T < T t
of types: subtype hierarchy

e Transitive: R<S andS<T

impliesR< T I
e Anti-symmetric: T
type or 1 2 13

T,<T, and T,<T, =T, =T,

subtype | PN
hierarchy c2 C3 (4 lass /inheri
* Defines a partial ordering on types! | Cassh/_'” e”;a"ce
. . . . lerarchy
» Use diagrams to describe typing relations C5
25 CS 412/413 Spring 2006 Introduction to Compilers 26

€S 412/413 Spring 2006 Introduction to Compilers

