CS412/413

Introduction to Compilers
Radu Rugina

Lecture 11: Symbol Tables
15 Feb 06

Where we Are

Source code if (b==0) a=b; —————
(character stream)

;l;?zae; [ie][e]=[oD[a]=]p 5] -------- l
if
& T
Abstract syntax N N e
tree (AST) b 0 a b

Semantic Analysis

€S 412/413 Spring 2006 Introduction to Compilers 2

Incorrect Programs

e Programs with correct syntax may still contain errors

e Lexical and syntax analysis are not powerful enough to
ensure the correct usage of variables, objects, functions,
statements, etc.

e Example: lexical analysis does not distinguish between
different variable names; it returns the same ID token

int a; int a;
a=1, b=1;
CS 412/413 Spring 2006 Introduction to Compilers

Incorrect Programs

e Example: syntax analysis does not correlate variable
declarations with variable uses:

int a;
a=1 a=1

* Example: syntax analysis does not keep track of types:

int a; int a;
a=1, a=10;
CS 412/413 Spring 2006 Introduction to Compilers 4

Goals of Semantic Analysis

* Semantic analysis = ensure that the program satisfies a set of
rules regarding the usage of programming constructs (e.g.,
variables, objects, expressions, statements)

¢ Examples of semantic rules:

— A variable should not be defined multiple times
— Variable must be declared before being used
— Variables must be defined before being used

— In an assignment statement, the variable and the assigned
expression must have the same type

— The test an if statement must have boolean type

e Typing rules are an important class

€S 412/413 Spring 2006 Introduction to Compilers

Type Information

e Type information = describes what values correspond can
program constructs have: variables, statements,
expressions, functions, etc.

variables: int i; integer
expressions: (i+1) == boolean
statements: while(i<5) i++; void
functions: int pow(int n,int m) int xint - int

* Type checking = set of rules which ensures the type
consistency of different constructs in the program
— Will discuss it in more detail next two lectures

€S 412/413 Spring 2006 Introduction to Compilers 6

Scope and Visibility

Scope (or visibility) of an identifier = the portion of the program
where the identifier can be referred to

Lexical scope = textual region in the program
— Statement block

— Formal argument list

— Object body

— Function or method body

— Module or file

— Whole program (multiple modules)

Scope of an identifier: the lexical scope its declaration refers to

€S 412/413 Spring 2006 Introduction to Compilers 7

Scope and Visibility

e Scope of variables in statement blocks:

<+—— scope of variable a

scope of variable b

* Global variables in C:
* If declared “static” then the current file
« If declared “extern” then the whole program

€S 412/413 Spring 2006 Introduction to Compilers

Scope and Visibility

* Scope of formal arguments of functions/methods:
int factorial(int n) {

«— scope of argument n

e Scope of labels in C:

void £ {
... goto 1; ...

1: a =1; - scope of label |
... goto 1; ...

CS 412/413 Spring 2006 Introduction to Compilers 9

Scope and Visibility

* Scope of object fields and methods:

class A {
private int x;

<« scope of field x
public void g() { x=1; }

class B extends A {

public int h() { gO;

CS 412/413 Spring 2006 Introduction to Compilers

scope of method g

Declarations

* Usually, identifiers must be declared in their scopes
Rule 1: Use an identifier only if declared in enclosing scope

Rule 2: Do not declare identifiers of the same kind with
identical names more than once in the same lexical scope

* Can declare identifiers with the same name with identical or

overlapping lexical scopes if they are of different kinds

class X { int X(int X) {
int X; int X;
void X(int X) { goto X; Not
X: for(;;) { int X; Recommended!
break X; X: X=1;1}
} }
}

€S 412/413 Spring 2006 Introduction to Compilers 1

Symbol Tables

Symbol table = an environment that stores information
about identifiers

— It is an important data structure, used throughout the rest of the
compilation process

Each entry in the symbol table contains
— The name of an identifier

— Attributes: its kind, its type, type qualifiers, etc.

NAME KIND TYPE QUALIFIER
foo fun int x int — bool extern
m param int
n param int const
tmp var bool const

€S 412/413 Spring 2006 Introduction to Compilers 12

Scope Information

e How to capture the scope information in the symbol table?

¢ Idea:
e There is a hierarchy of scopes in the program
* Use a similar hierarchy of symbol tables
* One symbol table for each scope

* Each symbol table contains the symbols declared in that
lexical scope

€S 412/413 Spring 2006 Introduction to Compilers 13

Example

Global symtab

Identifiers With Same Name

e The hierarchical structure of symbol tables automatically solves
the problem of shadowing (identifiers with the same name
declared in inner scopes)

* To find which is the declaration of an identifier that is active at
a program point :
 Start from the current scope
* Go up in the hierarchy until you find an identifier with the
same name

CS 412/413 Spring 2006 Introduction to Compilers 15

int x;
x| var int
void f£(int m) { f | fun |int - void
float x, y; g | fun | int - int
func f func g
{int i, j; ..; } symtab \ symtab
{int x; 1: ...; } ;
m _|param| int n |param| int
x | var | float ‘ t ‘ var ‘bool‘
int g(int n) { y | var | float
bool t;
3} [P [var [int | [x [var [int |
[J Jvar[int | [T @b | |
€S 412/413 Spring 2006 Introduction to Compilers 14
Example
int x; Global symtab
var int
void f£(int m) { f | fun | int — void
float x, y; g | fun | int - int
v
{int i, j; x=1;} / \
int x; 1: x = 2; -
} Lot x; x i} m |param| int n |param| int
x | var | float [t [var [bool |
int g(int n) { y | var | float “—3
bool t; -
ot S/ AN
} ‘ i ‘ var ‘ int ‘ ‘ X ‘ var ‘ int ‘
‘ j ‘ var ‘ int ‘ ‘ | ‘ lab ‘ ‘
x=1 X =2
€S 412/413 Spring 2006 Introduction to Compilers 16

Catching Semantic Errors

> !
int x; Error

x| var int
void f£(int m) { f | fun | int — void
float x, y;

g | fun | int - int

{int i, j; x=1; } // \
int x; 1: i = 2; T P
} { N } m |param| int n |param| int
x | var | float [t [var [bool |
int g(int n) { y | var | float x=3
bool t; / B

x = 3;

ES

i | [
‘J‘var‘int”l

€S 412/413 Spring 2006 Introduction to Compilers 17

Symbol Table Operations

¢ Two operations:
* An insert operation adds new identifiers in the table
* A lookup function searches symbols by name

* Cannot build symbol tables during lexical analysis
« hierarchy of scopes encoded in the syntax

e Build the symbol tables:

* while parsing, using the semantic actions
« After the AST is constructed

€S 412/413 Spring 2006 Introduction to Compilers 18

Implementation 1

e Linear dynamic structure: java.util.List, java.util.Vector
* One cell per entry in the table
* Simple structure, grows dynamically

— °
foo m n tmp
func var var Var

int x int int int bool
- bool

* Disadvantage: inefficient (i.e., slow) for large symbol tables
* need to scan half the structure on average

€S 412/413 Spring 2006 Introduction to Compilers 19

Implementation 2

 Efficient lookup implementation: java.util.HashMap

It is an array of lists (buckets)

Uses a hashing function to map the symbol name to the
corresponding bucket: hashfunc : string — int
Good hash function = even distribution in the buckets

— .———»{ m‘varfnt ‘ .{_.‘ tmp‘var})ool ‘ . ‘

—»‘ foo ‘func } o‘

» Disadvantage: structure complexity and space overhead is not
Jjustified for small sets of identifiers

€S 412/413 Spring 2006 Introduction to Compilers 20

Forward References

* Forward references = use an identifier within the scope of its
declaration, but before it is declared

* Two-pass approach:
¢ Record declarations in the first pass
* Check uses in the second pass

e Example:

class A {
int m() { return n(Q); }
int n) { return 1; }

CS 412/413 Spring 2006 Introduction to Compilers 21

