(CS412/CS413

Introduction to Compilers
Radu Rugina

Lecture 5: Grammars
1 Feb 06

Outline

¢ Context-Free Grammars (CFGs)
¢ Derivations

* Parse trees and abstract syntax
* Ambiguous grammars

€S 412/413 Spring 2006 Introduction to Compilers 2

Where we Are

Source code if (b ==0) a = b;
(character stream)

Lexical Analysis

e 3 e Y
; Syntax Analysis
==(1f\‘ (Parsing)

Abstract syntax ¥ X K:\b

tree (AST) o o =
Semantic Analysis
CS 412/413 Spring 2006 Introduction to Compilers 3

Syntax Analysis Example

if (b ==0) a = b;

Source code while (a '= -1) {
(token stream) stdio.print(a);
a=a-1;
}
}
Abstract Syntax block
Tree hile'stmt
if while stm
- if'stmt N z bou
/ ~ 000 o . TN ’
variable Co"fta"t varllable conlstant explr stmt /:\
|
b 0 a -1 call R

N .
stdio print variable
|

a

CS 412/413 Spring 2006 Introduction to Compilers 4

Parsing Analogy

e Natural languages: recognize whether a sentence is
grammatically well-formed and identify the function
of each component.

“I gave him the book” sentence\
/ object
subject: | verb: gave indirect object:]
him noun phrase

article: the noun: book

€S 412/413 Spring 2006 Introduction to Compilers 5

Syntax Analysis Overview

* Goal: check that the input token stream satisfies
the syntactic structure of the language

* What we need:
— An expressive way to describe the syntax
— An mechanism that:
¢ Checks if the input token stream has correct syntax
¢ And determines what the syntactic structure is

€S 412/413 Spring 2006 Introduction to Compilers 6

Why Not Regular Expressions?

* Regular expressions can expressively describe tokens
— easy to implement, efficient (using DFAs)

* Why not use regular expressions (on tokens) to specify programming
language syntax?

e Reason: they don't have enough power to express the syntax in
programming languages

e Typical constructs: nested expressions, nested statements
— Similar to the language of balanced parentheses

O, 00, (0), O, (OIO), LOIWON ...

needs unbounded counting

€S 412/413 Spring 2006 Introduction to Compilers 7

Context-Free Grammars

¢ A Context-Free Grammar is a tuple (V,%,S, -)
— Vis a finite set of nonterminal symbols
— X is a finite set of terminal symbols
— S 0 Vs a distinguished nonterminal, the start symbol
— - OV x (VOZ)*is a finite relation, the productions

¢ Context Free Grammar is abbreviated CFG

— Note: CFG also stands for “control flow graph”

€S 412/413 Spring 2006 Introduction to Compilers

Typographical Conventions

¢ A, B, C, ... are nonterminals
* a, b, c, ... are terminals
* ..., X Y,z are strings of terminals
e o, B, Y, 0, ... are strings of terminals or nonterminals
¢ A-d denotes production (A,0)
e In production Ao
— A'is the left-hand side (LHS)
— a is the right-hand side (RHS)

* A-ayl...la, denotes n productions A~ ..., A~ o,

CS 412/413 Spring 2006 Introduction to Compilers 9

Sample Grammar

e (V,Z,S,-), where
—Vis {S 1}, ie., there is one nonterminal S
—2is{a, bl ie., there are two terminals “a” and “b”
— - is defined by two productions S —aSbS and S - ¢

¢ What language does this grammar describe?

CS 412/413 Spring 2006 Introduction to Compilers 10

Direct Derivations

e Let G =(V,Z,S,) be a CFG.
The “directly derives” relation is defined by:

oAy = afy if A-B

e Examples

— Let G be the grammar with productions S — aSbS | €
— Then

* aSbS = aaSbSbS
e aSbS = abS

€S 412/413 Spring 2006 Introduction to Compilers 1

Context Free Languages

¢ The language generated by grammar G is:
L(G)={x|S=*x}
* L(G) is the set of strings of terminals derived from S by
repeatedly applying the productions as rewrite rules

— Context Free Languages (CFLs) are the languages
generated by context-free grammars

e If x O L(G), then a derivation of x is a sequence of strings
Og, Oy , ..., O, such that 0= S, 0y = x, o; = «;,, for
i=0..n-1. We write S = a; ... = a, = x

€S 412/413 Spring 2006 Introduction to Compilers 12

Every Regular Language is a CFL

¢ Inductively build a CFG for each RE

€ S ¢

a S - a

R, R, S-S5,

Ri IR, S-S5 1S,

R, * S-S5 Sle
where:

G, = grammar for R;, with start symbol S,
G, = grammar for R,, with start symbol S,

€S 412/413 Spring 2006 Introduction to Compilers 13

Grammars and Acceptors

e Acceptors for context-free grammars

Context-Free .
Grammar -
P _»{Yes, if x 0 L(G)
Token . No, if x O L(G)
Stream

* Syntax analyzers (parsers) = CFG acceptors. They also
output the corresponding derivation when the token stream
is accepted

— Various kinds: LL(k), LR(k), SLR, LALR

€S 412/413 Spring 2006 Introduction to Compilers 14

Another Example: Sum Grammar

e Grammar:
S-E+S | E
E-num | (S)
e Expanded:
SLE+S 4 productions
S L E V={SE}
E - num 2={¢() + num}
E- (S start symbol S
¢ Example accepted input:
(1+2+(3+4))+5
CS 412/413 Spring 2006 Introduction to Compilers 15

Derivation Example

Derive (1+2+(3+4))+5

= (S)+S
iEE S;+s S~ E+SIE
= (1+S)+S E - number | (S)
= (14 E4S)+S

= (14+2+S5)+S
1+2+E)4S
1+2+(9))+S
1+2+(E+S) 45
1+2+(3+S))+S
1+2+(3+E))+S
1+2+(3+4))4S
14+24+(3+4))+E
1+2+(3+4))+5

CS 412/413 Spring 2006 Introduction to Compilers 16

sguuiu iy

Derivations and Parse Trees

AN
/E + S, * The Parse Tree is a tree
P (S E representation of the derivation
arse E/'\ ! * Leaves = terminals
Tree + S5 .
] E/.\ * Internal nodes = nonterminals
1 5 +z * No information about order of
A derivation steps
(%)
-
o 3 4
Derivation

S=>E+S=>(S)+S=>(E£S)+S=>L+S)+S=>(1+E£S)+S= ...
S(1+2+(S))+S=>1+2+(E£S))HS=>...=> (1 +2+ (3 +E)+S
= ... (1 + 2+ (3+4))+5

€S 412/413 Spring 2006 Introduction to Compilers 17

Parse Tree vs. AST

e Parse tree also called “concrete syntax”

/?\ Abstract
/'?\Jr SI Syntax Tree
R A
oncrete
Syntax) {1 gRg I
5 £ 7
/1N /\
(S) 3 4
/|\S
I% - E Discards (abstracts)
3 4 unneeded information

€S 412/413 Spring 2006 Introduction to Compilers 18

€S 412/413 Spring 2006

Derivation Order

Can choose to apply productions in any order; select any
nonterminal A such that 0Ay = afy

Two standard orders: leftmost and rightmost -- useful for
different kinds of automatic parsing

Leftmost derivation: Always replace leftmost nonterminal
E+S=1+S

Rightmost derivation: Always replace rightmost nonterminal
E+S=E+E+S

Introduction to Compilers 19

Example

« S-E+SIE

E - num | (S)

¢ Left-most derivation

S=E4+S=(S)+S=(E4+S)+S=(1+5)+S= (1+E4S)+S =
14245)4+S = (142+E)+S = (1424(5))+S = (14+2+(E+S))+S =
1+2+E3+SB+ :>21+2+Ea+ };Jrs =

3+4))+5

14+2+(3+4))+S =
1+24(344))+E = (1+2+

¢ Right-most derivation

S=E+S = E+E = E+5= (S)+5 = €+SF_)+5 = (E+E+S)+5 =
E+E+E)+5 = (E+E+(S))+5 = (E+E+(E+S))+5 =
E+E+(E+E))+5 = (E+E+(E+4))+5 = (E+E+(3+4))+5 =
E+2+(3+4))+5 = (14+2+(3+4))+5

¢ Same parse tree: same productions chosen, different order

€S 412/413 Spring 2006 Introduction to Compilers 20

Parse Trees

In example grammar, leftmost and rightmost
derivations produced identical parse trees

+ operator associates to right in parse tree
regardless of derivation order

% +\5
1/ AN
(1+2+(3+4))+5 I:> N
7k
/\
3 4
CS 412/413 Spring 2006 Introduction to Compilers 21

An Ambiguous Grammar

e - associates to right because of right-recursive
production S - E+S

e Consider another grammar:
S - S+SIS*S | num
* Ambiguous grammar : a string in the language has

multiple parse trees

CS 412/413 Spring 2006 Introduction to Compilers 22

€S 412/413 Spring 2006

Different Parse Trees

S->S+S |S*S| num

Consider expression 1+ 2 * 3

Derivation 1: S-S +S=1+S=1+S*S>
21+2*%S=5142%*3

Derivation 2: S=S5*S=S+S*S=1+S5*S=
1+2*S=1+2%*3

These derivations correspond to different parse trees!
Hence, the grammar is ambiguous

Introduction to Compilers 23

