CS412/413

Introduction to Compilers
Radu Rugina

Lecture 4: Lexical Analyzers
30 Jan 06

Finite Automata

 Finite automata:
— States, transitions between states
— Initial state, set of final states

* DFA = deterministic
— Each transition consumes an input character
— Each transition is uniquely determined by the input character

¢ NFA = non-deterministic

— g&-transitions, multiple transitions from the same state on the
same input character

€S 412/413 Spring 2006 Introduction to Compilers 2

From RE to DFA

Two steps:
— Convert the regular expression to an NFA
— Convert the resulting NFA to a DFA

¢ The generated DFAs may have a large number of states

e State Minimization = optimization that converts a DFA
to another DFA that recognizes the same language and
has a minimum number of states

CS 412/413 Spring 2006 Introduction to Compilers 3

State Minimization

— DFA2: b b @

— Both DFAs accept: bxab*a

CS 412/413 Spring 2006 Introduction to Compilers 4

State Minimization

¢ Stepl. Partition states of original DFA into maximal-sized
groups of “equivalent” states

S=GU..UG,

¢ Step 2. Construct the minimized DFA such that there is a
state for each group G;

€S 412/413 Spring 2006 Introduction to Compilers 5

Optimized Acceptor

Regular _| | RE = NFA
Expression
Minimize DFA
Input w - DFA‘ L, Yes, if w O L(R)
String Simulation No, if w O L(R)
CS 412/413 Spring 2006 Introduction to Compilers 6

Lexical Analyzers vs Acceptors

e Lexical analyzers use the same mechanism, but
they:
— Have multiple RE descriptions for multiple tokens

— Return a sequence of matching tokens at the output
(or an error)

— Always return the longest matching token

— For multiple longest matching tokens use rule
priorities

€S 412/413 Spring 2006 Introduction to Compilers

Lexical Analyzers

REs for R..R—h| RE=NFA

ee al
Tokens "™ [| NFA = DFA
Minimize DFA
Character DFA
program ——»{ . . —> Token stream
Stream Simulation
(and errors)
CS 412/413 Spring 2006 Introduction to Compilers

Handling Multiple REs

* Combine the NFAs of all the regular expressions into a
single finite automata

Minimized DFA

00000

CS 412/413 Spring 2006 Introduction to Compilers

Lexical Analyzers

¢ Token stream at the output
— Associate tokens with final states

— Output the corresponding token when reaching a final state

¢ Longest match

— When in a final state, look if there is a further transition;
otherwise return the token for the current final state

¢ Rule priority

— Same longest matching token when there is a final state
corresponding to multiple tokens

— Associate that final state to the token with the highest priority

CS 412/413 Spring 2006 Introduction to Compilers 10

Longest Matching Sequence

¢ Problem: lexer goes past a final state of a short token,
but then doesn’t find a longer matching token

e Consider R=0 | 00 | 10 | 0011 and input: 0010

€S 412/413 Spring 2006 Introduction to Compilers 1

Automating Lexical Analysis

¢ All of the lexical analysis process can be
automated !
— RE - NFA - DFA - Minimized DFA
— Minimized DFA - Lexical Analyzer (DFA
Simulation Program)

* We only need to specify:

— Regular expressions for the tokens
— Rule priorities for multiple longest match cases

€S 412/413 Spring 2006 Introduction to Compilers 12

Lexical Analyzer Generators

REs for
Tokens

javac
compiler

Character program ﬁ[Lexer. class Token stream
Stream (and errors)
CS 412/413 Spring 2006 Introduction to Compilers 13

JFlex Specification File

¢ JFlex = Lexical analyzer generator
— written in Java
— generates a Java lexical analyzer

¢ Has three parts:
— Preamble, which contains package/import declarations
— Definitions, which contains regular expression abbreviations
— Regular expressions and actions, which contains:
« the list of regular expressions for all the tokens

« Corresponding actions for each token (Java code to be
executed when the token is returned)

C

1%

412/413 Spring 2006 Introduction to Compilers 14

Example Specification File

package FrontEnd;

import Error.LexicalError;

W

digits = 0| [1-9] [0-9]*

letter = [A-Za-z]

identifier = {letter}({letter}|[0-9_1)*
whitespace = [\t\n\rl+

Wh
{whitespace} { /* discard */ }
{digits} { return new Token(INT,
Integer.valueOf (yytext()); }
“if” { return new Token(IF, null); }
“while” { return new Token(WHILE, null); }

{identifier} { return new Token(ID, yytext()); }
{ throw new LexicalError(“illegal character”); }

CS 412/413 Spring 2006 Introduction to Compilers 15

Start States

¢ Mechanism that specifies state in which to start the
execution of the DFA

¢ Define states in the second section
— Ystate STATE
e Use states as prefixes of regular expressions in the third
section:
— <STATE> regex {action}
¢ Set current state in the actions
— yybegin(STATE)

¢ There is a pre-defined initial state: YYINITIAL

CS 412/413 Spring 2006 Introduction to Compilers 16

Example

[*

if

Jstate COMMENT

Wh

<YYINITIAL> “/%" { yybegin(COMMENT); }
<COMMENT> “+/” { yybegin(YYINITIAL); }
<COMMENT> . {1

*/

€S 412/413 Spring 2006 Introduction to Compilers 17

Start States and REs

¢ The use of states allow the lexer to recognize
more than regular expressions

— Reason: the lexer can jump across different states in
the semantic actions using yybegin (STATE)

¢ Example: nested comments

— Increment a global variable on open parentheses and
decrement it on close parentheses

— When the variable gets to zero, jump to YYINITIAL
— This models an infinite number of states

€S 412/413 Spring 2006 Introduction to Compilers 18

Conclusion

¢ The way lexical analyzers work:
— Convert REs to NFA
— Convert NFA to DFA
— Minimize DFA
— Use the minimized DFA to recognize tokens in the input
— Use priorities, longest matching rule

¢ Lexical analyzer generators automate the process
— Programmer writes regular expression descriptions of tokens

— Automatically gets a lexical analyzer program that reads
characters from the input stream and generates tokens

€S 412/413 Spring 2006 Introduction to Compilers 19

