CS412/413

Introduction to Compilers
Radu Rugina

Lecture 3: Finite Automata
27 Jan 06

Last Lecture

Tokens = strings of characters representing the lexical units
in the program
— E.g., identifiers, numbers, keywords, operators

Regular expressions = concise description of tokens

Language described by a regular expression
— L(R) = the language of expression R

€S 412/413 Spring 2006 Introduction to Compilers 2

Regular Expressions

e If R and S are regular expressions, so are:

€ empty string
a character a
RS concatenation
RIS alternation
R* Kleene star
CS 412/413 Spring 2006 Introduction to Compilers 3

Automatic Lexer Generators

e Input to lexer generator: token spec
— list of regular expressions in priority order

— associated action for each RE (generates appropriate
token object, other bookkeeping)

e Qutput: lexer program

— program that reads an input stream and breaks it up
into tokens according to the REs. (Or reports lexical
error -- “Unexpected character”)

CS 412/413 Spring 2006 Introduction to Compilers 4

Example: JFlex

package FrontEnd;

import Error.LexicalError;

Wh

digits = 0] [1-9] [0-9]*

letter = [A-Za-zZ]

identifier = {letter}({letter}|[0-9_1)x
whitespace = [\t\n\rl+

Wh

{whitespace} { /* discard */ }

{digits} { return new Token(INT,Integer.valueOf (yytext()); }
“if” { return new Token(IF, null); }

“while” { return new Token(WHILE, null); }

{identifier} { return new Token(ID, yytext()); }

{ throw new LexicalError(“illegal character”); }

€S 412/413 Spring 2006 Introduction to Compilers 5

How To Use Regular Expressions

We need a mechanism to determine if an input
string w belongs to the language denoted by a
regular expression R

Input string w |
in the program {Yes, if w = token
—>

. No, if w # token
Regex R which |

describes a token

e Such a mechanism is called an acceptor

€S 412/413 Spring 2006 Introduction to Compilers 6

Acceptors

* Acceptor = determines if an input string belongs
to a language L

Input w —
String Yes, if w O L
Acceptor |—»
No, ifwOL
Language L —*

e Finite Automata = acceptor for languages
described by regular expressions

€S 412/413 Spring 2006

Introduction to Compilers 7

Finite Automata

* Informally, a finite automaton consist of:
— A finite set of states
— Transitions between states
— An initial state (start state)
— A set of final states (accepting state)

¢ Two kinds of finite automata:

— Deterministic finite automata (DFA): the transition
from each state is uniquely determined by the current
input character

— Non-deterministic finite automata (NFA): there may
be multiple possible choices or some transitions do not
depend on the input character

€S 412/413 Spring 2006 Introduction to Compilers 8

DFA Example

* Finite automaton that accepts the strings in the
language denoted by the regular expression ab*a

b
— A graph .
OnO=0

— A transition table = b
0 1 Error
1 2 1
2 Error Error

CS 412/413 Spring 2006 Introduction to Compilers 9

Simulating the DFA

¢ Determine if the DFA accepts an input string

b
table [NSTATES] [NCHARS] ; .

a a
final [NSTATES]; ‘, @
state = INITIAL; o

while (state != Error && !input.eof()) {
¢ = input.read();
state = table[state] [c];

return (state != Error) && final[state];

CS 412/413 Spring 2006 Introduction to Compilers 10

NFA Definition

A non-deterministic finite automaton (NFA) is an
automaton that can have:

— e-transitions (do not consume input characters)

— multiple transitions from the same state on the same
input character

Example:

regexp?

€S 412/413 Spring 2006 Introduction to Compilers 1

Thompson: RE - NFA

¢ Thompson’s construction: build a finite
automaton from a regular expression
— Strategy: build the NFA inductively

e Empty string € : —>©
¢ Single character a: eOL@

€S 412/413 Spring 2006 Introduction to Compilers 12

Thompson’s Construction

R automaton

S

¢ Alternation R | S

< s

S automaton

. P EAlN ~
« Concatenation: RS 40O (O O)
N -2

R automaton S automaton

€S 412/413 Spring 2006 Introduction to Compilers 13

Thompson’s Construction

¢ Kleene star R*

€S 412/413 Spring 2006 Introduction to Compilers 14

DFA versus NFA

e DFA: automaton action is fully determined at
each step

— table-driven implementation

* NFA:
— automaton might have choice at each step

— Input string is accepted if one of the choices ends up
in a final state

— not obvious how to implement!

CS 412/413 Spring 2006 Introduction to Compilers 15

Simulating an NFA

¢ Need to search all the automaton paths that are
consistent with the string

¢ |dea: search paths in parallel

— Keep track of subset of NFA states that the search
could be in after seeing a prefix of the input

— “Multiple fingers” pointing to graph

CS 412/413 Spring 2006 Introduction to Compilers 16

Example

e Input string: -23

. l{\loli?}states: 0‘9 g € @
{13
{2, 3}

{2, 3}

€ 0-

©

€S 412/413 Spring 2006 Introduction to Compilers 17

NFA to DFA

¢ Automatic NFA to DFA conversion:

— Create one DFA for each distinct subset of NFA states,
eg., {0,1}, {1}, {2, 3}

¢ Called the “subset construction”

€S 412/413 Spring 2006 Introduction to Compilers 18

Algorithm

For a set S of states, define e-closure(S) = states reachable
from states in S by &-transitions

T=35

Repeat T =T U {s | s’'0T, (s’,s) is g-transition}
Until T remains unchanged

g-closure(S) =T

For a set S of states, define DFAedge(S,c) = states
reachable from S by transitions on c and €-transitions

DFAedge(S,c) =
e-closure({ s | s’'0S, (s',s) is c-transition})

€S 412/413 Spring 2006 Introduction to Compilers 19

Algorithm

DFAInitialState = g€-closure(NFAInitialState)
Worklist = { DFAInitialState }

While (Worklist not empty)
Pick state S from Worklist
For each character c :
S' = DFAedge(S,c)
if (S8’ not in DFA states)
Add S’ to DFA states and Worklist
Add an edge (S, S') labeled c in DFA

For each DFA state S
If S contains an NFA final state
Mark S as DFA final state

€S 412/413 Spring 2006 Introduction to Compilers

Putting the Pieces Together

Regula_r _I,| RE = NFA
Expression Conversion
!
NFA = DFA
Conversion
i .
Input w Ll DFA. L, Yes, if w O L(R)
String Simulation No, if w O L(R)
CS 412/413 Spring 2006 Introduction to Compilers 21

