
1

CS 412/413 Spring 2005 Introduction to Compilers 1

CS412/CS413

Introduction to Compilers
Tim Teitelbaum

Lecture 33: Register Allocation
22 Apr 05

CS 412/413 Spring 2005 Introduction to Compilers 2

Variables vs. Registers/Memory

• Difference between IR and assembly code:
– IR (and abstract assembly) manipulate data in local

and temporary variables
– Assembly code manipulates data in memory/registers

• During code generation, compiler must account
for this difference

• Compiler backend must allocate variables to
memory or registers in the generated assembly
code

CS 412/413 Spring 2005 Introduction to Compilers 3

Simple Approach
• Straightforward solution:

– Allocate each variable in activation record
– At each instruction, bring values needed into

registers, perform operation, then store result to
memory

• Problem: program execution very inefficient
– moving data back and forth between memory and

registers

mov 16(%ebp), %eax
mov 20(%ebp), %ebx
add %ebx, %eax
mov %eax, 24(%ebx)

mov 16(%ebp), %eax
mov 20(%ebp), %ebx
add %ebx, %eax
mov %eax, 24(%ebx)

x = y + zx = y + z

CS 412/413 Spring 2005 Introduction to Compilers 4

Register Allocation
• Better approach = register allocation: keep variable

values in registers as long as possible

• Best case: keep a variable’s value in a register
throughout the lifetime of that variable
– In that case, we don’t need to ever store it in memory
– We say that the variable has been allocated in a register
– Otherwise allocate variable in activation record
– We say that variable is spilled to memory

• Which variables can we allocate in registers?
– Depends on the number of registers in the machine
– Depends on how variables are being used

• Main Idea: cannot allocate two variables to the same
register if they are both live at some program point

CS 412/413 Spring 2005 Introduction to Compilers 5

Register Allocation Algorithm
Hence, basic algorithm for register allocation is:
1. Perform live variable analysis (over abstract

assembly code!)
2. Inspect live variables at each program point
3. If two variables are in same live set, they`

can’t be allocated to the same register – they
interfere with each other

4. Conversely, if two variables do not interfere
with each other, they can be assigned the
same register.

CS 412/413 Spring 2005 Introduction to Compilers 6

Interference Graph
• Nodes = program variables
• Edges = connect variables that

interfere with each other

• Register allocation = graph coloring

a

b c

eax

ebx

{a}
{a,b}
{a,c}
{a,b}

b = a + 2;
c = b*b;
b = c + 1;
return b*a;

2

CS 412/413 Spring 2005 Introduction to Compilers 7

Graph Coloring
• Questions:

– Can we efficiently find a coloring of the graph
whenever possible?

– Can we efficiently find the optimum coloring
of the graph?

– Can we assign registers to avoid move
instructions?

– What do we do when there aren’t enough
colors (registers) to color the graph?

CS 412/413 Spring 2005 Introduction to Compilers 8

Coloring a Graph
• Assume K = number of registers (take K=3)
• Try to color graph with K colors
• Key operation = Simplify: find some node with at most

K-1 edges and cut it out of the graph

CS 412/413 Spring 2005 Introduction to Compilers 9

Coloring a Graph
• Idea: once coloring is found for simplified graph,

removed node can be colored using free color
• Algorithm: simplify until graph contain no nodes
• Unwind stack, adding nodes back & assigning colors

CS 412/413 Spring 2005 Introduction to Compilers 10

Stack Algorithm
• Phase 1: Simplification

– Repeatedly simplify graph
– When a variable (i.e., graph

node) is removed, push it on a
stack

• Phase 2: Coloring
– Unwind stack and reconstruct

the graph as follows:
– Pop variable from the stack
– Add it back to the graph
– Color the node for that variable

with a color that it doesn’t
iterfere with

simplifysimplify

colorcolor

CS 412/413 Spring 2005 Introduction to Compilers 11

Stack Algorithm

• Example:

• …how about:

a b

dc

a b

d e
f

c

CS 412/413 Spring 2005 Introduction to Compilers 12

• If graph cannot be colored, it will reduce to a graph in
which every node has at least K neighbors

• May happen even if graph is colorable in K!

• Finding K-coloring is NP-hard problem (requires search)

Failure of Heuristic

?

3

CS 412/413 Spring 2005 Introduction to Compilers 13

Spilling
• Once all nodes have K or more neighbors, pick a node

and mark it for possible spilling (storage in activation
record).

• Remove it from graph, push it on stack
• Try to pick node not used much, not in inner loop

x

CS 412/413 Spring 2005 Introduction to Compilers 14

Optimistic Coloring
• Spilled node may be K-colorable
• Try to color it when popping the stack
• If not colorable, actual spill: assign it a location in the

activation record

x

CS 412/413 Spring 2005 Introduction to Compilers 15

Accessing Spilled Variables

• Need to generate additional instructions to get
spilled variables out of activation record and
back in again

• Simple approach: always keep extra registers
handy for shuttling data in and out

• Better approach: rewrite code introducing a
new temporary, rerun liveness analysis and
register allocation

CS 412/413 Spring 2005 Introduction to Compilers 16

Rewriting Code

• Example: add v1, v2
• Suppose that v2 is selected for spilling and assigned to

activation record location [ebp-24]
• Add new variable (say t35) for just this instruction,

rewrite:
mov –24(%ebp), t35
add v1, t35

Advantage: t35 has short lifetime and doesn’t interfere
with other variables as much as v2 did.

• Now rerun algorithm; fewer or no variables will spill.

CS 412/413 Spring 2005 Introduction to Compilers 17

Putting Pieces Together

SimplifySimplify

Optimistic coloringOptimistic coloring

Potential SpillPotential Spill

Actual SpillActual Spill

Simplification

Coloring

CS 412/413 Spring 2005 Introduction to Compilers 18

Precolored Nodes

• Some variables are pre-assigned to registers

– mul instruction has
use[I] = eax, def[I] = { eax, edx }

– result of function call returned in eax

• To properly allocate registers, treat these register uses
as special temporary variables and enter into
interference graph as precolored nodes

4

CS 412/413 Spring 2005 Introduction to Compilers 19

Precolored Nodes

• Simplify. Never remove a pre-colored node ---
it already has a color, i.e., it is a given
register

• Coloring. Once simplified graph is all colored
nodes, add other nodes back in and color
them using precolored nodes as starting point

CS 412/413 Spring 2005 Introduction to Compilers 20

Optimizing Move Instructions

• Code generation produces a lot of extra mov
instructions

mov t5, t9

• If we can assign t5 and t9 to same register, we can get
rid of the mov --- effectively, copy elimination at the
register allocation level.

• Idea: if t5 and t9 are not connected in inference graph,
coalesce them into a single variable; the move will be
redundant.

CS 412/413 Spring 2005 Introduction to Compilers 21

Coalescing
• When coalescing nodes, take union of edges
• Hence, coalescing results in high-degree nodes

• Problem: coalescing nodes can make a graph uncolorable

t5 t9 t5/t9

CS 412/413 Spring 2005 Introduction to Compilers 22

Conservative Coalescing

• Conservative = ensure that coalescing doesn’t make the
graph non-colorable (if it was colorable before)

• Approach 1: coalesce a and b if resulting node ab has
less than K neighbors of significant degree
– Safe because we can simplify graph by removing neighbors with

insignificant degree, then remove coalesced node and get the
same graph as before

• Approach 2: coalesce a and b if for every neighbor t of
a: either t already interferes with b; or t has
insignificant degree
– Safe because removing insignificant neighbors with coalescing

yields a subgraph of the graph obtained by removing those
neighbors without coalescing

CS 412/413 Spring 2005 Introduction to Compilers 23

Simplification + Coalescing
• Consider M = set of move-related nodes (which appear in

the source or destination of a move instruction) and N = all
other variables

• Start by simplifying as many nodes as possible from N
• Coalesce some pairs of move-related nodes using

conservative coalescing; delete corresponding mov
instruction(s)

• Coalescing gives more opportunities for simplification:
coalesced nodes may be simplified

• If can neither simplify nor coalesce, take a node f in M and
freeze all the move instructions involving that variable; i.e.,
move all f-related nodes from M to N; go back to simplify.

• If all nodes frozen, no simplify possible, spill a variable

CS 412/413 Spring 2005 Introduction to Compilers 24

Full Algorithm

SimplifySimplify

Optimistic coloringOptimistic coloring

FreezeFreeze

Actual SpillActual Spill

Simplification

Coloring

Potential SpillPotential Spill

CoalesceCoalesce

5

CS 412/413 Spring 2005 Introduction to Compilers 25

Overall Code Generation Process
• Start with low-level IR code

• Build DAG of the computation
– Access global variables using static addresses
– Access function arguments using frame pointer
– Assume all local variables and temporaries are in registers

(assume unbounded number of registers)

• Generate abstract assembly code
– Perform tiling of DAG

• Register allocation
– Live variable analysis over abstract assembly code
– Assign registers and generate assembly code

CS 412/413 Spring 2005 Introduction to Compilers 26

Example

array[int] a

function f:(int x) {
int i;
…
a[x+i] = a[x+i] + 1;
…

}

array[int] a

function f:(int x) {
int i;
…
a[x+i] = a[x+i] + 1;
…

}

t1 = x+i
t1 = t1*4
t1 = $a+t1
t2 = *t1
t2 = t2+1
t3 = x+i
t3 = t3*4
t3 = $a+t3
*t3 = t2

t1 = x+i
t1 = t1*4
t1 = $a+t1
t2 = *t1
t2 = t2+1
t3 = x+i
t3 = t3*4
t3 = $a+t3
*t3 = t2

Program Low IR

CS 412/413 Spring 2005 Introduction to Compilers 27

Accesses to Function Arguments

t4 = ebp+8
t5 = *t4
t1 = t5+i
t1 = t1*4
t1 = $a+t1
t2 = *t1
t2 = t2+1
t6=ebp+8
t7 = *t6
t3 = t7+i
t3 = t3*4
t3 = $a+t3
*t3 = t2

t4 = ebp+8
t5 = *t4
t1 = t5+i
t1 = t1*4
t1 = $a+t1
t2 = *t1
t2 = t2+1
t6=ebp+8
t7 = *t6
t3 = t7+i
t3 = t3*4
t3 = $a+t3
*t3 = t2

t1 = x+i
t1 = t1*4
t1 = $a+t1
t2 = *t1
t2 = t2+1
t3 = x+i
t3 = t3*4
t3 = $a+t3
*t3 = t2

t1 = x+i
t1 = t1*4
t1 = $a+t1
t2 = *t1
t2 = t2+1
t3 = x+i
t3 = t3*4
t3 = $a+t3
*t3 = t2

CS 412/413 Spring 2005 Introduction to Compilers 28

DAG Construction

store

+

i load

+

ebp 8

*
4

+

$a

load

+

1

t4 = ebp+8
t5 = *t4
t1 = t5+i
t1 = t1*4
t1 = $a+t1
t2 = *t1
t2 = t2+1
t6=ebp+8
t7 = *t6
t3 = t7+i
t3 = t3*4
t3 = $a+t3
*t3 = t2

t4 = ebp+8
t5 = *t4
t1 = t5+i
t1 = t1*4
t1 = $a+t1
t2 = *t1
t2 = t2+1
t6=ebp+8
t7 = *t6
t3 = t7+i
t3 = t3*4
t3 = $a+t3
*t3 = t2

CS 412/413 Spring 2005 Introduction to Compilers 29

• Find tiles
– Maximal Munch
– Dynamic programming

• Temporaries to transfer
values between tiles

• No temporaries inside any
of the tiles

Tiling

store

+

i load

+

ebp 8

*
4

+

$a

load

+

1

r1

r3

r2

CS 412/413 Spring 2005 Introduction to Compilers 30

mov $a, r1
mov 8(%ebp), r3
mov i, r2
add r3, r2
add $1, (r1,r2,4)

Abstract Assembly Generation

Abstract Assemblystore

+

i load

+

ebp 8

*
4

+

$a

load

+

1

r1

r3

r2

6

CS 412/413 Spring 2005 Introduction to Compilers 31

{%ebp, i}
mov $a, r1

{%ebp,r1,i}
mov 8(%ebp), r3

{r1, r3, i}
mov i, r2

{r1,r2,r3}
add r3, r2

{r1,r2}
add $1, (r1,r2,4)

{}

{%ebp, i}
mov $a, r1

{%ebp,r1,i}
mov 8(%ebp), r3

{r1, r3, i}
mov i, r2

{r1,r2,r3}
add r3, r2

{r1,r2}
add $1, (r1,r2,4)

{}

Register Allocation
Live Variables

Abstract Assembly

mov $a, r1
mov 8(%ebp), r3
mov i, r2
add r3, r2
add $1, (r1,r2,4)

CS 412/413 Spring 2005 Introduction to Compilers 32

• Build interference graph

• Allocate registers:
eax: r1, ebx: r3
i, r2 spilled to memory

Register Allocation
Live Variables

%ebp r1

i r3

r2

{%ebp, i}
mov $a, r1

{%ebp,r1,i}
mov 8(%ebp), r3

{r1, r3, i}
mov i, r2

{r1,r2,r3}
add r3, r2

{r1,r2}
add $1, (r1,r2,4)

{}

{%ebp, i}
mov $a, r1

{%ebp,r1,i}
mov 8(%ebp), r3

{r1, r3, i}
mov i, r2

{r1,r2,r3}
add r3, r2

{r1,r2}
add $1, (r1,r2,4)

{}

CS 412/413 Spring 2005 Introduction to Compilers 33

Register allocation results:
eax: r1; ebx: r3; i, r2 spilled to memory

mov $a, %eax
mov 8(%ebp), %ebx
mov –12(%ebp), %ecx
mov %ecx, -16(%ebp)
add %ebx, -16(%ebp)
mov –16(%ebp), %ecx
add $1, (%eax,%ecx,4)

mov $a, %eax
mov 8(%ebp), %ebx
mov –12(%ebp), %ecx
mov %ecx, -16(%ebp)
add %ebx, -16(%ebp)
mov –16(%ebp), %ecx
add $1, (%eax,%ecx,4)

Assembly Code Generation

mov $a, r1
mov 8(%ebp), r3
mov i, r2
add r3, r2
add $1, (r1,r2,4)

mov $a, r1
mov 8(%ebp), r3
mov i, r2
add r3, r2
add $1, (r1,r2,4)

Abstract Assembly Assembly Code

CS 412/413 Spring 2005 Introduction to Compilers 34

Where We Are

Source Program

Optimized

Assembly Code

