
1

CS412/413

Introduction to Compilers
Tim Teitelbaum

Lecture 4: Lexical Analyzers
31 Jan 05

CS 412/413 Spring 2005 Introduction to Compilers 2

Outline

• DFA state minimization

• Lexical analyzers
• Automating lexical analysis
• Jlex lexical analyzer generator

CS 412/413 Spring 2005 Introduction to Compilers 3

Finite Automata
• Finite automata:

– States, transitions between states
– Initial state, set of final states

• DFA = deterministic
– Each transition consumes an input character
– Each transition is uniquely determined by the input character

• NFA = non-deterministic
– There may be ε-transitions, which do not consume input

characters
– There may be multiple transitions from the same state on

the same input character

CS 412/413 Spring 2005 Introduction to Compilers 4

From Regexp to DFA

• Two steps:
– Convert the regular expression to an NFA
– Convert the resulting NFA to a DFA

• The generated DFAs may have a large number of
states

• State Minimization = optimization that converts a DFA
to another DFA that recognizes the same language
and has a minimum number of states

CS 412/413 Spring 2005 Introduction to Compilers 5

• Example:

– DFA1:

– DFA2:

– Both DFAs accept: b*ab*a

State Minimization

0

1

2

a

4a b 3
a

b

b

b

a

0 1 2
a a

b b

CS 412/413 Spring 2005 Introduction to Compilers 6

• Step1. Partition states of original DFA into
maximal-sized groups of “equivalent” states
S = G1 U … U Gn

• Step 2. Construct the minimized DFA such
that there is a state for each group Gi

State Minimization

0

1

2

a

4a b 3
a

b

b

b

a

a a

b b

2

CS 412/413 Spring 2005 Introduction to Compilers 7

DFA Minimization
• Step1. Partition states of original DFA into
maximal-sized groups of “equivalent” states

– Step 1a. Initial partition is S = Final U Non-final
– Step 1b. Repeatedly refine the partition while any

group Gi contains states p and q such that for some
symbol a

p

q

Gi GyGx x ≠ y

a

a

CS 412/413 Spring 2005 Introduction to Compilers 8

DFA Minimization
• Step1. Partition states of original DFA into
maximal-sized groups of “equivalent” states

– Step 1a. Initial partition is S = Final U Non-final
– Step 1b. Repeatedly refine the partition while any

group Gi contains states p and q such that for some
symbol a

p

q

Gi

GyGx x ≠ y

a

a

Gi’

CS 412/413 Spring 2005 Introduction to Compilers 9

Optimized Acceptor

RE ⇒ NFA

NFA ⇒ DFA

DFA
Simulation

Yes, if w ∈ L(R)

No, if w ∉ L(R)
Input
String

Regular
Expression R

w

Minimize DFA

CS 412/413 Spring 2005 Introduction to Compilers 10

Lexical Analyzers vs Acceptors

• Lexical analyzers use the same mechanism,
but they:
– Have multiple RE descriptions for multiple tokens
– Return a sequence of matching tokens at the

output (or an error)
– Always return the longest matching token
– For multiple longest matching tokens use rule

priorities

CS 412/413 Spring 2005 Introduction to Compilers 11

Lexical Analyzers

RE ⇒ NFA
NFA ⇒ DFA

Minimize DFA

DFA
Simulation

Character
Stream

REs for
Tokens

R1 … Rn

program Token stream
(and errors)

CS 412/413 Spring 2005 Introduction to Compilers 12

Handling Multiple REs

whitespace

identifier

number

keywords

ε

ε

ε
ε

NFAs
Minimized DFA

• Combine the NFAs of all the regular expressions into a
single finite automata

3

CS 412/413 Spring 2005 Introduction to Compilers 13

Lexical Analyzers
• Token stream at the output

– Associate tokens with final states
– Output the corresponding token when reaching a final state

• Longest match
– When in a final state, look if there is a further transition;

otherwise return the token for the current final state

• Rule priority
– Same longest matching token when there is a final state

corresponding to multiple tokens
– Associate that final state to the token with the highest

priority

CS 412/413 Spring 2005 Introduction to Compilers 14

Issue
• JLex tries to find the longest matching sequence
• Problem: what if the lexer goes past a final state of a

shorter token, but then doesn’t find any other longer
matching token later?

• Consider R = 00 | 10 | 0011 and input: 0010

• We reach state 3 with no transition on input 0!
• Solution: record the last accepting state. Roll input

back to that point.

0 1 4
0 0

3
1 1

65
01

2

CS 412/413 Spring 2005 Introduction to Compilers 15

Automating Lexical Analysis

• All of the lexical analysis process can be
automated !
– RE → NFA → DFA → Minimized DFA
– Minimized DFA → Lexical Analyzer (DFA

Simulation Program)

• We only need to specify:
– Regular expressions for the tokens
– Rule priorities for multiple longest match cases

CS 412/413 Spring 2005 Introduction to Compilers 16

Lexical Analyzer Generators

Jlex
Compiler

Character
Stream

REs for
Tokens

Token stream
(and errors)

lex.l

lex.java

lex.class

javac
Compiler

program

CS 412/413 Spring 2005 Introduction to Compilers 17

Jlex Specification File
• Jlex = Lexical analyzer generator

– written in Java
– generates a Java lexical analyzer

• Has three parts:
– Preamble, which contains package/import declarations
– Definitions, which contains regular expression abbreviations
– Regular expressions and actions, which contains:

• the list of regular expressions for all the tokens
• Corresponding actions for each token (Java code to be

executed when the token is returned)

CS 412/413 Spring 2005 Introduction to Compilers 18

Example Specification File
Package Parse;
Import Error.LexicalError;
%%
digits = 0|[1-9][0-9]*
letter = [A-Za-z]
identifier = {letter}({letter}|[0-9_])*
whitespace = [\ \t\n\r]+
%%
{whitespace} {/* discard */}
{digits} { return new

Token(INT, Integer.valueOf(yytext()); }
“if” { return new Token(IF, null); }
“while” { return new Token(WHILE, null); }
{identifier} { return new Token(ID, yytext()); }
. { ErrorMsg.error(“illegal character”); }

4

CS 412/413 Spring 2005 Introduction to Compilers 19

Start States
• Mechanism that specifies state in which to start the

execution of the DFA

• Define states in the second section
– %state STATE

• Use states as prefixes of regular expressions in the
third section:
– <STATE> regex {action}

• Set current state in the actions
– yybegin(STATE)

• There is a pre-defined initial state: YYINITIAL

CS 412/413 Spring 2005 Introduction to Compilers 20

Example

STRINGINITIAL .

”

”

if

%state STRING
%%
<YYINITIAL> “if” { return new Token(IF, null); }
<YYINITIAL> “\”” { yybegin(STRING); … }
<STRING> “\”” { yybegin(YYINITIAL); … }
<STRING> . { … }

CS 412/413 Spring 2005 Introduction to Compilers 21

Start States and REs
• The use of states allow the lexer to recognize

more than regular expressions (or DFAs)
– Reason: the lexer can jump across different states

in the semantic actions using yybegin(STATE)

• Example: nested comments
– Increment a global variable on open parentheses

and decrement it on close parentheses
– When the variable gets to zero, jump to YYINITIAL

– The global variable essentially models an infinite
number of states!

CS 412/413 Spring 2005 Introduction to Compilers 22

Conclusion
• Regular expressions: concise way of

specifying tokens
• Can convert RE to NFA, then to DFA, then to

minimized DFA
• Use the minimized DFA to recognize tokens in

the input stream
• Automate the process using lexical analyzer

generators
– Write regular expression descriptions of tokens
– Automatically get a lexical analyzer program which

identifies tokens from an input stream of
characters

