
 

CS 4110

Programming Languages & Logics

Lecture 29
Propositions as Types



Propositions as Types

Logics = Type Systems

2



Inference Rules for Logic

We have used inference rules to build up inductively defined sets
of PL concepts: operational steps, valid Hoare triples,
associations between terms and types, etc.

Logicians use the same kind of notation to build up the set of
true logical formulas.

Here’s a rule from natural deduction, a constructive logic
invented by logician Gerhard Gentzen in 1935:

ϕ ψ

ϕ ∧ ψ
∧‑iNTRO

Given a proof of ϕ and a proof of ψ, the rule lets you construct a
proof of ϕ ∧ ψ.

3



Inference Rules for Logic

We have used inference rules to build up inductively defined sets
of PL concepts: operational steps, valid Hoare triples,
associations between terms and types, etc.

Logicians use the same kind of notation to build up the set of
true logical formulas.

Here’s a rule from natural deduction, a constructive logic
invented by logician Gerhard Gentzen in 1935:

ϕ ψ

ϕ ∧ ψ
∧‑iNTRO

Given a proof of ϕ and a proof of ψ, the rule lets you construct a
proof of ϕ ∧ ψ.

3



Natural Deduction

Let’s use our usual 4110 tools to define the set of true formulas
(“theorems”).

We’ll start with a grammar for formulas:

ϕ ::= ⊤
| ⊥
| X
| ϕ ∧ ψ
| ϕ ∨ ψ
| ϕ→ ψ
| ¬ϕ
| ∀X. ϕ

where X ranges over Boolean variables
and ¬ϕ is an abbreviation for ϕ→ ⊥.

4



Natural Deduction

Let’s use our usual 4110 tools to define the set of true formulas
(“theorems”).

We’ll start with a grammar for formulas:

ϕ ::= ⊤
| ⊥
| X
| ϕ ∧ ψ
| ϕ ∨ ψ
| ϕ→ ψ
| ¬ϕ
| ∀X. ϕ

where X ranges over Boolean variables
and ¬ϕ is an abbreviation for ϕ→ ⊥.

4



Natural Deduction

Let’s define a judgment that that a formula is true given a set of
assumptions Γ:

Γ ⊢ ϕ

where Γ is just a list of formulas.

If ⊢ ϕ (with no assumptions), we say ϕ is a theorem.

Examples:
• ⊢ A ∧ B → A
• ⊢ ¬(A ∧ B) → ¬A ∨ ¬B
• A,B, C ⊢ B

5



Natural Deduction

Let’s define a judgment that that a formula is true given a set of
assumptions Γ:

Γ ⊢ ϕ

where Γ is just a list of formulas.

If ⊢ ϕ (with no assumptions), we say ϕ is a theorem.

Examples:
• ⊢ A ∧ B → A

• ⊢ ¬(A ∧ B) → ¬A ∨ ¬B
• A,B, C ⊢ B

5



Natural Deduction

Let’s define a judgment that that a formula is true given a set of
assumptions Γ:

Γ ⊢ ϕ

where Γ is just a list of formulas.

If ⊢ ϕ (with no assumptions), we say ϕ is a theorem.

Examples:
• ⊢ A ∧ B → A
• ⊢ ¬(A ∧ B) → ¬A ∨ ¬B

• A,B, C ⊢ B

5



Natural Deduction

Let’s define a judgment that that a formula is true given a set of
assumptions Γ:

Γ ⊢ ϕ

where Γ is just a list of formulas.

If ⊢ ϕ (with no assumptions), we say ϕ is a theorem.

Examples:
• ⊢ A ∧ B → A
• ⊢ ¬(A ∧ B) → ¬A ∨ ¬B
• A,B, C ⊢ B

5



Natural Deduction

Let’s write the rules for our judgment:

Γ ⊢ ϕ Γ ⊢ ψ
Γ ⊢ ϕ ∧ ψ

∧‑iNTRO

Γ ⊢ ϕ ∧ ψ
Γ ⊢ ϕ

∧‑ELiM1
Γ ⊢ ϕ ∧ ψ
Γ ⊢ ψ

∧‑ELiM2

Γ, ϕ ⊢ ψ
Γ ⊢ ϕ→ ψ

→‑iNTRO

...and so on.

6



Natural Deduction

Let’s write the rules for our judgment:

Γ ⊢ ϕ Γ ⊢ ψ
Γ ⊢ ϕ ∧ ψ

∧‑iNTRO

Γ ⊢ ϕ ∧ ψ
Γ ⊢ ϕ

∧‑ELiM1
Γ ⊢ ϕ ∧ ψ
Γ ⊢ ψ

∧‑ELiM2

Γ, ϕ ⊢ ψ
Γ ⊢ ϕ→ ψ

→‑iNTRO

...and so on.

6



Natural Deduction

Let’s write the rules for our judgment:

Γ ⊢ ϕ Γ ⊢ ψ
Γ ⊢ ϕ ∧ ψ

∧‑iNTRO

Γ ⊢ ϕ ∧ ψ
Γ ⊢ ϕ

∧‑ELiM1
Γ ⊢ ϕ ∧ ψ
Γ ⊢ ψ

∧‑ELiM2

Γ, ϕ ⊢ ψ
Γ ⊢ ϕ→ ψ

→‑iNTRO

...and so on.

6



Natural Deduction

Let’s write the rules for our judgment:

Γ ⊢ ϕ Γ ⊢ ψ
Γ ⊢ ϕ ∧ ψ

∧‑iNTRO

Γ ⊢ ϕ ∧ ψ
Γ ⊢ ϕ

∧‑ELiM1
Γ ⊢ ϕ ∧ ψ
Γ ⊢ ψ

∧‑ELiM2

Γ, ϕ ⊢ ψ
Γ ⊢ ϕ→ ψ

→‑iNTRO

...and so on.

6



Natural Deduction

Γ, ϕ ⊢ ϕ
AXiOM

Γ, ϕ ⊢ ψ
Γ ⊢ ϕ→ ψ

→‑iNTRO Γ ⊢ ϕ→ ψ Γ ⊢ ϕ
Γ ⊢ ψ

→‑ELiM

Γ ⊢ ϕ Γ ⊢ ψ
Γ ⊢ ϕ ∧ ψ

∧‑iNTRO Γ ⊢ ϕ ∧ ψ
Γ ⊢ ϕ

∧‑ELiM1 Γ ⊢ ϕ ∧ ψ
Γ ⊢ ψ

∧‑ELiM2

Γ ⊢ ϕ
Γ ⊢ ϕ ∨ ψ

∨‑iNTRO1 Γ ⊢ ψ
Γ ⊢ ϕ ∨ ψ

∨‑iNTRO2

Γ ⊢ ϕ ∨ ψ Γ ⊢ ϕ→ χ Γ ⊢ ψ → χ

Γ ⊢ χ
∨‑ELiM

Γ, P ⊢ ϕ
Γ ⊢ ∀P. ϕ

∀‑iNTRO Γ ⊢ ∀P. ϕ
Γ ⊢ ϕ{ψ/P}

∀‑ELiM

7



Natural Deduction

Let’s try a proof! We can write a proof that A ∧ B → B ∧ A is a
theorem.

A ∧ B ⊢ A ∧ B
AXiOM

A ∧ B ⊢ B
∧‑ELiM2 A ∧ B ⊢ A ∧ B

AXiOM
A ∧ B ⊢ A

∧‑ELiM1
A ∧ B ⊢ B ∧ A

∧‑iNTRO
⊢ A ∧ B → B ∧ A

→‑iNTRO

Does this look familiar?

x :A× B ⊢ x :A× B
T‑VAR

x :A× B ⊢ #2 x :B
T‑#1 x :A× B ⊢ x :A× B

T‑VAR
x :A× B ⊢ #1 x :A

T‑#2
x :A× B ⊢ (#2 x,#1 x) :B× A

T‑PAiR
⊢ λx. (#2 x,#1 x) :A× B → B× A

T‑ABS

8



Natural Deduction

Let’s try a proof! We can write a proof that A ∧ B → B ∧ A is a
theorem.

A ∧ B ⊢ A ∧ B
AXiOM

A ∧ B ⊢ B
∧‑ELiM2 A ∧ B ⊢ A ∧ B

AXiOM
A ∧ B ⊢ A

∧‑ELiM1
A ∧ B ⊢ B ∧ A

∧‑iNTRO
⊢ A ∧ B → B ∧ A

→‑iNTRO

Does this look familiar?

x :A× B ⊢ x :A× B
T‑VAR

x :A× B ⊢ #2 x :B
T‑#1 x :A× B ⊢ x :A× B

T‑VAR
x :A× B ⊢ #1 x :A

T‑#2
x :A× B ⊢ (#2 x,#1 x) :B× A

T‑PAiR
⊢ λx. (#2 x,#1 x) :A× B → B× A

T‑ABS

8



Natural Deduction

Let’s try a proof! We can write a proof that A ∧ B → B ∧ A is a
theorem.

A ∧ B ⊢ A ∧ B
AXiOM

A ∧ B ⊢ B
∧‑ELiM2 A ∧ B ⊢ A ∧ B

AXiOM
A ∧ B ⊢ A

∧‑ELiM1
A ∧ B ⊢ B ∧ A

∧‑iNTRO
⊢ A ∧ B → B ∧ A

→‑iNTRO

Does this look familiar?

x :A× B ⊢ x :A× B
T‑VAR

x :A× B ⊢ #2 x :B
T‑#1 x :A× B ⊢ x :A× B

T‑VAR
x :A× B ⊢ #1 x :A

T‑#2
x :A× B ⊢ (#2 x,#1 x) :B× A

T‑PAiR
⊢ λx. (#2 x,#1 x) :A× B → B× A

T‑ABS

8



Natural Deduction

Let’s try a proof! We can write a proof that A ∧ B → B ∧ A is a
theorem.

A ∧ B ⊢ A ∧ B
AXiOM

A ∧ B ⊢ B
∧‑ELiM2 A ∧ B ⊢ A ∧ B

AXiOM
A ∧ B ⊢ A

∧‑ELiM1
A ∧ B ⊢ B ∧ A

∧‑iNTRO
⊢ A ∧ B → B ∧ A

→‑iNTRO

Does this look familiar?

x :A× B ⊢ x :A× B
T‑VAR

x :A× B ⊢ #2 x :B
T‑#1 x :A× B ⊢ x :A× B

T‑VAR
x :A× B ⊢ #1 x :A

T‑#2
x :A× B ⊢ (#2 x,#1 x) :B× A

T‑PAiR
⊢ λx. (#2 x,#1 x) :A× B → B× A

T‑ABS

8



Propositions as Types

Every natural deduction proof tree has a corresponding type
tree in System F with product and sum types! And vice‑versa!

Type Systems Formal Logic
τ Type ϕ Formula
τ is inhabited ϕ is a theorem
e Well‑typed expression π Proof

A programwith a given type acts as awitness that the type’s
corresponding formula is true.

9



Propositions as Types

Every type rule in System F with product and sum types
corresponds 1‑1 with a proof rule in natural deduction:

Type Systems Formal Logic
→ Function → Implication
× Product ∧ Conjunction
+ Sum ∨ Disjunction
∀ Universal ∀ Quantifier

You can even add existential types to correspond to existential
quantification. It still works!

Is this a coincidence? Natural deduction was invented by a
German logician in 1935. Types for the λ‑calculus were invented
by Church at Princeton in 1940.

10



Propositions as Types

Every type rule in System F with product and sum types
corresponds 1‑1 with a proof rule in natural deduction:

Type Systems Formal Logic
→ Function → Implication
× Product ∧ Conjunction
+ Sum ∨ Disjunction
∀ Universal ∀ Quantifier

You can even add existential types to correspond to existential
quantification. It still works!

Is this a coincidence? Natural deduction was invented by a
German logician in 1935. Types for the λ‑calculus were invented
by Church at Princeton in 1940.

10



Propositions as Types Through the Ages

Natural Deduction
Gentzen (1935)

⇔ Typed λ‑Calculus
Church (1940)

Type Schemes
Hindley (1969)

⇔ ML’s Type System
Milner (1975)

System F
Girard (1972)

⇔ Polymorphic λ‑Calculus
Reynolds (1974)

Modal Logic
Lewis (1910)

⇔ Monads
Kleisli (1965), Moggi (1987)

Classical–Intuitionistic
Embedding
Gödel (1933)

⇔ Continuation Passing Style
Reynolds (1972)

11



Term Assignment

This all means that we have a new way of proving theorems:
writing programs!

To prove a formula ϕ:
1. Convert the ϕ into its corresponding type τ .
2. Find some program v that has the type τ .
3. Realize that the existence of v implies a type tree for ⊢ v :τ ,

which implies a proof tree for ⊢ ϕ.

12



Term Assignment

This all means that we have a new way of proving theorems:
writing programs!

To prove a formula ϕ:
1. Convert the ϕ into its corresponding type τ .
2. Find some program v that has the type τ .
3. Realize that the existence of v implies a type tree for ⊢ v :τ ,

which implies a proof tree for ⊢ ϕ.

12



Negation and Continuations

Let’s explore one extension. We’d like to use this rule from
classical logic:

Γ ⊢ ϕ
Γ ⊢ ¬¬ϕ

but there’s no obvious correspondence in System F.

Recall that¬ϕ is shorthand for ϕ→ ⊥. So ¬¬ϕ corresponds to
the System F function type (τ → ⊥) → ⊥.

So what we need is a way to take any program of any type τ and
turn it into a program of type (τ → ⊥) → ⊥.

Shockingly, that’s exactly what the CPS transform does! A τ
becomes a function that takes a continuation τ → ⊥ and
invokes it, producing⊥.

13



Negation and Continuations

Let’s explore one extension. We’d like to use this rule from
classical logic:

Γ ⊢ ϕ
Γ ⊢ ¬¬ϕ

but there’s no obvious correspondence in System F.

Recall that¬ϕ is shorthand for ϕ→ ⊥. So ¬¬ϕ corresponds to
the System F function type (τ → ⊥) → ⊥.

So what we need is a way to take any program of any type τ and
turn it into a program of type (τ → ⊥) → ⊥.

Shockingly, that’s exactly what the CPS transform does! A τ
becomes a function that takes a continuation τ → ⊥ and
invokes it, producing⊥.

13



Negation and Continuations

Let’s explore one extension. We’d like to use this rule from
classical logic:

Γ ⊢ ϕ
Γ ⊢ ¬¬ϕ

but there’s no obvious correspondence in System F.

Recall that¬ϕ is shorthand for ϕ→ ⊥. So ¬¬ϕ corresponds to
the System F function type (τ → ⊥) → ⊥.

So what we need is a way to take any program of any type τ and
turn it into a program of type (τ → ⊥) → ⊥.

Shockingly, that’s exactly what the CPS transform does! A τ
becomes a function that takes a continuation τ → ⊥ and
invokes it, producing⊥.

13


