CS4110

Programming Languages & Logics

Lecture 28
Existential Types

Namespaces

It’s no fun to program in a language with a single, global
namespace: C, FORTRAN, and PHP until depressingly recently.

Namespaces

It’s no fun to program in a language with a single, global
namespace: C, FORTRAN, and PHP until depressingly recently.

Components of a large program have to worry about name
collisions.

And components become tightly coupled: any component can
use a name defined by any other.

Modularity

A module is a collection of named entities that are related.

Modules provide separate namespaces: different modules can
use the same names without worrying about collisions.

Modules can:
e Choose which names to export

e Choose which names to keep hidden
e Hide implementation details

Existential Types

In the polymorphic A-calculus, we introduced universal
quantification for types.

To=-|a|VarT

Existential Types

In the polymorphic A-calculus, we introduced universal
quantification for types.

To=-|a|VarT
If we have V, why not 37 What would existential type
quantification do?

o= |al|JaT

Existential Types

Together with records, existential types let us hide the
implementation details of an interface.

(6]

Existential Types

Together with records, existential types let us hide the
implementation details of an interface.

3 Counter.
{ new : Counter,
get : Counter — int,
inc : Counter — Counter }

(6]

Existential Types

Together with records, existential types let us hide the
implementation details of an interface.

3 Counter.
{ new : Counter,
get : Counter — int,
inc : Counter — Counter }

Here, the witness type might be int:

{ new : int,
get : int — int,
inc : int — int }

Existential Types

Let’s extend our STLC with existential types:

T =int
| 71— 7
[{l:m,... L7 }
| Ja. T

| o

Syntax & Dynamic Semantics

We'll tag the values of existential types with the witness type.

Syntax & Dynamic Semantics

We'll tag the values of existential types with the witness type.

Avalue has type 3 a.. T is a pair {7/, v}
where v has type 7{7'/a}.

Syntax & Dynamic Semantics

We'll tag the values of existential types with the witness type.

Avalue has type 3 a.. T is a pair {7/, v}
where v has type 7{7'/a}.

We’ll add new operations to construct and destruct these pairs:

pack {r,e}asJa. n

unpack {a,x} =e; in e,

Syntax

e:=X

| M:T.e

| ere;

| n

| el + e
[{Lh=e1,....[,=e,}

| e.l

| pack {m1,e} asJa. 7,

| unpack {a, x} =e; ine,

=n

| M:T.e
|{[1:V1,...,In:Vn}
| pack {1,v} as Ja. 1

Dynamic Semantics

E:=...
| pack {m,E}asJ a.
| unpack {a,x} =Eine

unpack {a, x} = (pack{7,v}as3 5.7m) ine — e{v/x}{n/a}

Static Semantics

A,r - e:Tz{T]_/Ot}

AT Fpack{m,etasTa.np:Fa.n

10

Static Semantics

A,r - e:Tz{T]_/Oé}
AT Fpack{m,etasTa.np:Fa.n

A,rl—el:fla.ﬁ AU{O{},F,X:T]_|_62:’7'2 A|_7'20k
A, T Funpack {a,x} =e;ine;:n

The side condition A I 7, ok ensures that the existentially
quantified type variable oo does not appear free in 7,.

10

Example

let counterADT =
pack { int,
{new =0,
get = \i:int. i,
inc= \Aicint.i4+1}}
as
3 Counter.
{ new : Counter,
get : Counter — int,
inc : Counter — Counter}

11

Example

Here’s how to use the existential value counterADT:

unpack {T, c} = counterADT in
lety = c.newin
c.get (c.inc(c.incy))

12

Representation Independence

We can define alternate, equivalent implementations of our
counter...

let counterADT =
pack {{x:int},
{new = {x = 0},
get = Ar:{x:int}.r.x,
inc = Ar:{x:int}.rx+1}}
as
dCounter.
{ new : Counter,
get : Counter — int,
inc : Counter — Counter}

Existentials and Type Variables

In the typing rule for unpack, the side condition A - 7, ok
prevents type variables from “leaking out” of unpack
expressions.

14

Existentials and Type Variables

In the typing rule for unpack, the side condition A - 7, ok
prevents type variables from “leaking out” of unpack
expressions.

This rules out programs like this:
letm =
pack{int,{a =5,f= M:int. x+ 1}}asJa. {a: o, fra — a}
in

unpack {T,x} = min x.fx.a

where the type of x.fx.ais just T.

Encoding Existentials

We can encode existentials using universals!

The idea is to use a Church encoding where an existential value
is a function that takes a type and then calls a continuation.

Encoding Existentials

We can encode existentials using universals!

The idea is to use a Church encoding where an existential value
is a function that takes a type and then calls a continuation.

Jda.7 = VB.(Va.7 — B) = B
pack {r,e} as3a. 7, = AB.M: (Va.r, — B).f[n]e

unpack {a,x} =e;ine, £ e [n](Aa.)x: 1. €;)

where e; has type Ja.7; and e, has type 7,

